Team:ETH Zurich/Parameters

PARAMETERS

ESTIMATION METHODS

We used two different approaches for parameter estimation from experimental data:

MEIGO

MEIGO is an open source global optimization toolbox that provides several solvers for different applications. In our project we used the Cooperative enhanced Scatter Solver (CeSS) from the MATLAB version of the toolbox. Parameters were estimated by fitting ODE simulations to the experimental data using a least-square error function.

INSIGHT

INSIGHT is a parameter estimation method based on stochastic simulations and Approximate Bayesian computation (ABC). Parameters are estimated by minimizing the Kolmogorov distance between simulated and measured (through flow cytometry) distributions. This distance is defined as the tolerance of the fit, and is progressively reduced using Sequential Monte Carlo (SMC). The result is a posterior distribution of parameters that fit the data within a specific tolerance. As final value of the parameters we select the Maximum A Posteriori (MAP) estimates.

The estimations have been performed using the INSIGHTv3 implementation developed by Jan Mikelson. The tool is freely available online, but we highly encourage to check the website of our department, as a new improved version is expected to be published in the months after the Jamboree.

Parameter constant for the NO module

Name Description Unit range values value Estimation method of Evaluation Source
$knor_no$ NorR NOproduction rate $nM^{-1} min^{-1}$ - 0,0011183 MEIGO from plate reader Computed from parameter estimation
$k_{nor_no}$ NorR NOdissociation rate $min^{-1}$ - 0,0363665 MEIGO from plate reader Computed from parameter estimation
$knorV1$ DNorR NO2binding rate $nM^{-1} min^{-1}$ - 0,0014788 MEIGO from plate reader Computed from parameter estimation
$k_norV1$ DNorR NO2unbinding rate $min^{-1}$ - 0,00081 MEIGO from plate reader Computed from parameter estimation
$knorV2$ DNorR NO2binding rate $nM^{-1} min^{-1}$ - 0,00185016 MEIGO from plate reader Computed from parameter estimation
$k_norV2$ DNorR NO2unbinding rate $min^{-1}$ - 7.1 MEIGO from plate reader Computed from parameter estimation
$knorV3$ DNorR NO2binding rate $nM^{-1} min^{-1}$ - 0,986026 MEIGO from plate reader Computed from parameter estimation
$k_norV3$ DNorR NO2unbinding rate $min^{-1}$ - 6.1 MEIGO from plate reader Computed from parameter estimation
$knorprod$ NorR constitutive production rate $nM min^{-1}$ - 0,958777 MEIGO from plate reader Computed from parameter estimation
$dnor$ NorR degradation rate $min^{-1}$ - 89,159 MEIGO from plate reader Computed from parameter estimation
$d_{nor_no}$ NorR NOdegradation rate $min^{-1}$ - 46,678 MEIGO from plate reader Computed from parameter estimation
$kdnor$ DNorR dimerization constant $nM^{-1} min^{-1}$ - 75698,5 MEIGO from plate reader Computed from parameter estimation
$k_dnor$ DNorR dissociation rate $min^{-1}$ - 1,91699 MEIGO from plate reader Computed from parameter estimation
$kmrna$ mRNA production rate for pnorV promoter $min^{-1}$ - 3438,47 MEIGO from plate reader Computed from parameter estimation
$dmrna$ mRNA degradation rate $min^{-1}$ - 0,0199458 MEIGO from plate reader Computed from parameter estimation

Parameter constant for the AHL module

Name Description Unit range values value Estimation method of Evaluation Source
$kesarProd$ EsaR constitutive production rate $nM min^{-1}$ - 3,24412 Estimation from FACS Data using MEIGO Computed from parameter estimation
$desar$ DEsaR degradation rate $min^{-1}$ - 0,0152529 Estimation from FACS Data using MEIGO Computed from parameter estimation
$kl$ promoter leakiness - - 0,00242729 Estimation from FACS Data using MEIGO Computed from parameter estimation
$k5$ DEsaR production rate $nM^{-1} min^{-1}$ - 0,01 Estimation from FACS Data using MEIGO Computed from parameter estimation
$k_5$ DEsaR dissociation rate $min^{-1}$ - 0,65492 Estimation from FACS Data using MEIGO Computed from parameter estimation
$k6$ DEsaR AHL production rate $nM^{-1} min^{-1}$ - 0,0100102 Estimation from FACS Data using MEIGO Computed from parameter estimation
$k_6$ DEsaR AHL dissociation rate $min^{-1}$ - 0,719465 Estimation from FACS Data using MEIGO Computed from parameter estimation
$k7$ AHL to Pesar promoter binding rate $nM^{-1} min^{-1}$ - 0,4878 Estimation from FACS Data using MEIGO Computed from parameter estimation
$k_7$ AHL to Pesar promoter unbinding rate $min^{-1}$ - 0,0383841 Estimation from FACS Data using MEIGO Computed from parameter estimation
$kmrna$ mRNA production rate for Pconst+esaboxes promoter $min^{-1}$ - 0,0121775 Estimation from FACS Data using MEIGO Computed from parameter estimation
$dmrna$ mRNA degradation rate $min^{-1}$ - 0,0142082 Estimation from FACS Data using MEIGO Computed from parameter estimation

Parameter constant for the AHL module

}
Name Description Unit range values value Estimation method of Evaluation Source
$klac_{pyr}$ NorR NOpyruvate production rate from lactate $min^{-1}$ - 1.2 e+05 Literature click on this link to see the publication
$kdlldr$ LLdR dimerization rate $nM^{-1} min^{-1}$ - 0.1 Estimated -
$k_{dlldr}$ LLdR dissociation rate $min^{-1}$ - 1 Estimated -
$kgoff$ binding of LldR to the promoter (represion) $nM^{-1} min^{-1}$ - 0.1 Estimated -
$k_{goff}$ Unbinding of LldR from the promoter (activation) $min^{-1}$ - 8.1 Estimated -
$kdlldr_{lac}$ binding of 1 Lac protein to DLldR $nM^{-1}min^{-1}$ - 0.1 Estimated -
$k_{dlldr_lac}$ unbinding of 1 Lac protein from DLldR $min^{-1}$ - 6.1 Estimated -
$kgoff_{lac}$ binding of 1 Lac protein to the promoter + DLldR dimer $nM^{-1} min^{-1}$ - 0.1 Estimated -
$k_{goff_lac}$ ubinding of 1 Lac protein to the promoter + DLldR dimer $min^{-1}$ - 6.1 Estimated -
$dlld$ degradation rate of LldD $min^{-1}$ - 0.1 Estimated -
$kllddProd$ production rate of LldD $nM min^{-1}$ - 1 Estimated -
$klldrProd$ production rate of LldR $nM min^{-1}$ - 100 Estimated -
$kl$ leakiness of the promoter - - 0.1 Estimated -

REPORTER MODULE PARAMETERS

Name Description Unit Prior range Value Source
$k_{DBxb1}$ Bxb1 dimerization rate $nM^{-1}min^{-1}$ - 1 Assumed
$k_{-DBxb1}$ DBxb1 dissociation rate $min^{-1}$ - 10 Assumed
$k_{attBP}$ Affinity of DBxb1 to attB and attP binding sites $nM^{-1}$ - 70 doi:10.1371/journal.pgen.1003490
$k_{attLR}$ Affinity of DBxb1 to attL and attR binding sites $nM^{-1}$ - 15 doi:10.1371/journal.pgen.1003490
$k_{flip}$ Switch flipping rate $min^{-1}$ - 0.04 doi:10.1046/j.1365-2958.2003.03723.x

REPORTER MODULE PARAMETERS

Name Description Unit Prior range Value Source
$l_{pTet}$ Tet promoter leakiness $-$ 0.0 - 0.5 0.057 Estimated with INSIGHT
$n$ Sensitivity of the tet promoter $-$ 0.8 - 2.8 1.57 Estimated with INSIGHT
$K_m$ aTc concentration for half occupation $nM$ 10 - 15000 9853.6 Estimated with INSIGHT
$k_{mRNAgfp}$ sfGFP mRNA transcription rate $min^{-1}$ 0.001 - 10 0.382 Estimated with INSIGHT
$d_{mRNAgfp}$ sfGFP mRNA degradation rate $min^{-1}$ 0.05 - 20 8.93 Estimated with INSIGHT
$k_{GFP}$ sfGFP translation rate $min^{-1}$ 0.00005 - 0.5 0.012 Estimated with INSIGHT
$d_{GFP}$ sfGFP degradation rate $min^{-1}$ 0.0001 - 0.1 0.018 Estimated with INSIGHT


Parameters for mNectarine ($k_{mRNAmnect}$, $d_{mRNAmnect}$, $d_{mNect}$) are assumed to be on the same order of magnitude as the parameters for sfGFP. Since sfGFP is engineered for faster folding, we assume $k_{mNect}=0.1\cdot k_{GFP}$

Thanks to the sponsors that supported our project: