Fig 1. Fluorescence test of CsgA-His binding with nanomaterials
This assay indicated the success in expression of the self-assembly curli fibers.Fig 2.Crystal violet assay of CsgA-Histag.
This assay indicates the success in expression of the self-assembly curli fibers. The difference between induced strains secreted CsgA-Histag and ΔCsgA manifest a distinct extracellular biofilm production in the modified strain.Fig 3. Fluorescence test of CsgA-His binding with nanomaterials
Fig 4.Representative TEM images of biotemplated CdS quantum dots on CsgA-His.
Finally, transmission electron microscopy(TEM) visualize the microscopic binding effect of CsgA-Histag fused biofilm with CdS nanorods in comparison with image of pure nanofiber composed by CsgA-Histag and one without inducer. Thus we ultimately confirm the viability of bio-abiotic hybrid system.Fig 5.Representative TEM images of biotemplated CdS nanorods on CsgA-His.
Fig 5. Congo Red Assay of His-CsgA-SpyCatcher-Histag.
Fig 6. Fluoresence Nanomaterials Binding Assay of His-CsgA-SpyCatcher-Histag
Fig 7. aTc induced secretion of His-CsgA-SpyCatcher-Histag visualized by TEM. Without the presence of inducer, there’s no nanofiber formation around scattered bacteria.
CsgA-His can interface with different inorganic materials since they form the coordinate bonds with the same ligand, Co-NTA, on nanomaterials. Here we use to AuNPs in place of quantum dots and nanomaterials to characterize the validity of Histags on CsgA fused amyloid protein and meanwhile prove the versatility of our biofilm-based platform. As the figures shown, we confirm the feasibility of our newly constructed biobricks to template inorganic material and thus form bio-abiotic hybrid system.Fig 8. After aTc induced, biofilm secreted by His-CsgA-SpyCatcher-Histag organizes AuNP around the cells.
Fig 9.mcherry-SpyTag fluorescence protein binding test of His-CsgA-SpyCatcher-(Histag).
Fig 10.Inducer concentration gradient test.
High-activity hydrogenase is necessary for our system. To achieve efficient enzymatic activities, we codon-optimized and constructed the whole hydrogenase gene clusters (from Clostridium acetobutylicum) by leveraging the multi-expression Acembl System. Please refer to Hydrogenase Session for more details.
Figure 11 Integration of four basic plasmid backbones into one.
We basically relied on the Acembl system for hydrogenases gene cluster construction and finished the cloning of single device with sequencing confirmation. (Click to see the detail sequenced information: HydA-SpyCatcher, HydA-SpyTag, HydE, HydF, HydG) In using the system, however, we can either fuse 4 single plasmids with one step of Cre recombination or do it step by step, integrating each plasmid one at a time. In order to gain higher success rate, we choose the second way. We fused pACE-Histag-TEV-HydA-Spytag/pACE-Histag-TEV-HydA-Spycatcher with pDK-HydF together as the first step. To test if we successfully fused the two, we use single restricted endonuclease digestion of XhoI. The restriction gives two bands on a 1% TAE Gel, in accordance with the band predicted by SnapGene®.Figure 12A Fusion of plasmid 1 and plasmid 4.
Single restricted-endonuclease digestion of Xhol in pACE-Histag-TEV-HydA-Spytag x pDK-HydF gives two bands. The left pic refers to expected results based on SnapGene® software prediction, with two bands at 5427bp and 2146bp, respectively. The right figure refers to the experimental results, which is in good agreement with the software prediction.Figure 12B Fusion of plasmid 2 and plasmid 4.
Single restricted-endonuclease digestion of Xhol in pACE-Histag-TEV-HydA-Spycatcher x pDK-HydF gives two bands. The left pic refers to expected results based on SnapGene® software prediction, with two bands at 5427bp and 2455bp, respectively. The 2455bp is larger than 2146bp due to the larger SpyCatcher. The right figure refers to the experimental results, which is in good agreement with the software prediction. Figure 12A/B shows that plasmid1/2 and 4 are successfully fused.Figure 12C Fusion of the plasmid in step one(12A) and plasmid 3.
After the fusion of the plasmid in step one and plasmid 3, there will be one more enzyme restriction site of XhoI. Single restricted-endonuclease digestion of Xhol in pACE-Histag-TEV-HydA-SpyTag x pDK-HydF x pDC-HydE gives two bands. The left pic refers to expected results based on SnapGene® software prediction, with three bands at 5427bp, 2897bp and 2249bp, respectively. The right figure refers to the experimental results, which is in good agreement with the software prediction.Figure 12D Fusion of the plasmid in step one(12B) and plasmid 3.
After the fusion of the plasmid in step one and plasmid 3, there will be one more enzyme restriction site of XhoI. Single restricted-endonuclease digestion of Xhol in pACE-Histag-TEV-HydA-SpyCatcher x pDK-HydF x pDC-HydE gives two bands. The left pic refers to expected results based on SnapGene® software prediction, with three bands at 5427bp, 2897bp and 2558bp, respectively. The right figure refers to the experimental results, which is in good agreement with the software prediction. Figure 1C/D shows that plasmids obtained in step 1 and plasmid 3 are successfully fused.Figure 12E Fusion of the plasmid in step (12C) and plasmid 3.
For a whole fused plasmid, It becomes hard to analyze it with just Xho I single enzyme. The bar at 3k actually accounts for two bars, with a separation of 20bp. In the picture, although the four bands predicted by SnapGene® can be found on our real gel, it is less clear. Given the inconvenience with testing by restriction, we turned to resistance screening. The result is that it is resistant to four antibodies (Ampicillin, Chloramphenicol, kanamycin and Spectinomycin).Figure 14
Figure 15 Verifying the bidirectional catalytic property of [FeFe] hydrogenase.
During the period under lighting, the hydrogen production increases, until we shut off the light at points that correspond to the tips. The curve then goes downward, showing that the hydrogen concentration is lowered, an evidence of the consumption of hydrogen.