Biofilms are ubiquitous as they can be found both in human and some extreme environments. They can be formed on inert surfaces of devices and equipment, which will be hard to clean and cause dysfunction of the device.
However, we view biofilms through different lenses to transform those ill impacts into merits. We envision to establish the Solar Hunter system on E.Coli’s biofilm. Biofilms can substantially increase the resistance of bacteria to adverse conditions like acid or oxidative stress and form a stable and balanced system. These traits can elevate its adaptability to application to industry for they do not need to be meticulously taken care of and are capable to withstand harsh conditions. Therefore, it will be a good practice to reduce the production cost.
What’s more, biofilm can automatically grow by static adherence, which facilitates regeneration and recycling in mass production in industry. Startlingly, biofilms can also serve as a synthetic nonconductive biological platform for self-assembling function materials. The amyloid protein CsgA, which is the dominant component in E.Coli, can be programmed to append small peptide domain and successfully secreted with biological functions. Also, it has been tested that CsgA subunits fused with not too large peptide can be tolerated by curli export machinery and maintain the self-assembly function as always. (Neel S. Joshi, 2014)