Difference between revisions of "Team:EPFL"

(Prototype team page)
 
Line 1: Line 1:
 
{{EPFL}}
 
{{EPFL}}
 
<html>
 
<html>
 +
 +
<style type="text/css">
 +
.description p {
 +
  text-align: justify;
 +
}
 +
</style>
  
 
<div class="column full_size" >
 
<div class="column full_size" >
<img src="http://placehold.it/800x300/d3d3d3/f2f2f2">
+
<img style="max-width: 100%;" src="https://static.igem.org/mediawiki/2016/4/4a/Nihms645765f1.jpg">
 
</div>
 
</div>
 
 
<div class="column full_size" >
 
<div class="column full_size" >
<h2> Welcome to iGEM 2016! </h2>
+
<div class="description">
<p>Your team has been approved and you are ready to start the iGEM season! </p>
+
<p><strong>Description summary:</strong></p>
 +
<p>CRISPR-Cas9 has already revolutionized synthetic biology. To build upon this development we aim to implement digital-like circuits in yeast using a CRISPR-associated RNA scaffold system (Zalatan et al, 2015). Recently, a study published the use of the modular software CELLO which automates the design of DNA circuits using transcription factors in E. coli. As a proof of concept we will modify CELLO to use our dCas9 transistors in yeast for a so-called half-adder system, using AND and XOR gates, that we can then experimentally assess. With this approach we hope to pave the way for even more complex biological circuits in yeasts.</p>
 +
<p><strong>What have we done?</strong></p>
 +
<p>We started brainstorming in December and quickly decided to work on the creation of a biological circuit.<br />We were inspired by the EPFL&rsquo;s 2015 iGEM team, who worked on bioLOGIC. This system uses a catalytically dead version of Cas9 fused with an RNA Polymerase recruiting element (VP64) to create transistors, and depending on the identity of the promoter that dCas9-VP64 binds, it will either be repressed or activated.</p>
 +
<p>At first, we created brainstorming groups to find applications of the project. The idea of creating a half-adder stood out from the rest for its possible applications as well as its suitability as a proof of concept. Later, we discovered a program called CELLO that automates the design of DNA based logic circuits.</p>
 +
<p>At this point, we split into two groups. The first group worked on the design of the system, the second on the understanding of Cello&rsquo;s software in order to implement it with our system.</p>
  
</div>  
+
<p>
 +
<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Half_Adder.svg/200px-Half_Adder.svg.png" align="right" />
 +
The project was defined as to create simple gates using biological parts. We wanted to use d-Cas9 to target specific sequences of promoters and therefore be able to activate or repress the expression of the genes controlled by them. In order to build biosensors, we imagined a system that allows our gates to respond differently to various environments, such as presence of galactose. <br />We also want to implement our system in yeast as they are well representation of mammalian cells and easy to handle. With this system we aim to create an half-adder which correspond to a XOR and an AND gate linked together.</p>
  
<div class="column half_size" >
 
<h5>Before you start: </h5>
 
<p> Please read the following pages:</p>
 
<ul>
 
<li>  <a href="https://2016.igem.org/Requirements">Requirements page </a> </li>
 
<li> <a href="https://2016.igem.org/Wiki_How-To">Wiki Requirements page</a></li>
 
<li> <a href="https://2016.igem.org/Resources/Template_Documentation"> Template Documentation </a></li>
 
</ul>
 
</div>
 
  
<div class="column half_size" >
+
<p>As mentioned before, we also plan to modify CELLO to be able to design genetic circuits in yeast using it. Fortunately, CELLO has a modular nature, allowing us to do this easily. CELLO has a User Constraint File that enables users to pass the program information about this system it is designing the circuit for. This file includes information pertaining to the species, the reactivity of gates to inputs, and the plasmids used. In order to obtain this new information, we plan on characterizing our system and gates using photometric experiments.</p>
<div class="highlight">
+
<p>During the process of designing our system, we stumbled upon a paper outlining a more intuitive way to activate and inhibit genes with dCas9, and we decided to improve our project using its results.</p>
<h5> Styling your wiki </h5>
+
<p>This paper describes synthetic dcas9-based transcriptional programs in yeast. Instead of having the dcas9 unit fused to an activator or repressor protein, the guide RNA is extended to include an effector protein recruitment site, so that scaffold RNAs that encode both target locus and regulatory action.</p>
<p>You may style this page as you like or you can simply leave the style as it is. You can easily keep the styling and edit the content of these default wiki pages with your project information and completely fulfill the requirement to document your project.</p>
+
<p>Using a dCas9 based system with scaffold guide RNAs offers numerous advantages with regards to previous biological circuit designing systems. Firstly, using gRNAs as parts of gates, instead of transcription factors reduces toxicity related to transcription factor density in the nucleus. In addition, our system can be even more complex than systems based on transcription factors since the amount of connections between gates are not limited by the amount of transcription factors available. Finally, the use of scaffolding RNAs simplifies design, since we can have just one dCas9, and it will also hopefully lead to more predictable repression and activation in the system. </p>
<p>While you may not win Best Wiki with this styling, your team is still eligible for all other awards. This default wiki meets the requirements, it improves navigability and ease of use for visitors, and you should not feel it is necessary to style beyond what has been provided.</p>  
+
</div>
+
</div>
+
 
+
<div class="column full_size" >
+
<h5> Wiki template information </h5>
+
<p>We have created these wiki template pages to help you get started and to help you think about how your team will be evaluated. You can find a list of all the pages tied to awards here at the <a href="https://2016.igem.org/Judging/Pages_for_Awards/Instructions">Pages for awards</a> link. You must edit these pages to be evaluated for medals and awards, but ultimately the design, layout, style and all other elements of your team wiki is up to you!</p>
+
  
 +
<p>
 +
<img src="https://static.igem.org/mediawiki/2016/3/34/Repression_schema_expectation.png" style="max-width: 100%;" />
 +
</p>
 +
</div>
 
</div>  
 
</div>  
 
 
 
 
<div class="column half_size" >
 
<h5> Editing your wiki </h5>
 
<p>On this page you can document your project, introduce your team members, document your progress and share your iGEM experience with the rest of the world! </p>
 
<p> <a href="https://2016.igem.org/wiki/index.php?title=Team:Example&action=edit"> Click here to edit this page! </a></p>
 
 
</div>
 
 
 
<div class="column half_size" >
 
<h5>Tips</h5>
 
<p>This wiki will be your team’s first interaction with the rest of the world, so here are a few tips to help you get started: </p>
 
<ul>
 
<li>State your accomplishments! Tell people what you have achieved from the start. </li>
 
<li>Be clear about what you are doing and how you plan to do this.</li>
 
<li>You have a global audience! Consider the different backgrounds that your users come from.</li>
 
<li>Make sure information is easy to find; nothing should be more than 3 clicks away.  </li>
 
<li>Avoid using very small fonts and low contrast colors; information should be easy to read.  </li>
 
<li>Start documenting your project as early as possible; don’t leave anything to the last minute before the Wiki Freeze. For a complete list of deadlines visit the <a href="https://2016.igem.org/Calendar">iGEM 2016 calendar</a> </li>
 
<li>Have lots of fun! </li>
 
</ul>
 
</div>
 
 
 
<div class="column half_size" >
 
<h5>Inspiration</h5>
 
<p> You can also view other team wikis for inspiration! Here are some examples:</p>
 
<ul>
 
<li> <a href="https://2014.igem.org/Team:SDU-Denmark/"> 2014 SDU Denmark </a> </li>
 
<li> <a href="https://2014.igem.org/Team:Aalto-Helsinki">2014 Aalto-Helsinki</a> </li>
 
<li> <a href="https://2014.igem.org/Team:LMU-Munich">2014 LMU-Munich</a> </li>
 
<li> <a href="https://2014.igem.org/Team:Michigan"> 2014 Michigan</a></li>
 
<li> <a href="https://2014.igem.org/Team:ITESM-Guadalajara">2014 ITESM-Guadalajara </a></li>
 
<li> <a href="https://2014.igem.org/Team:SCU-China"> 2014 SCU-China </a></li>
 
</ul>
 
</div>
 
 
<div class="column half_size" >
 
<h5> Uploading pictures and files </h5>
 
<p> You can upload your pictures and files to the iGEM 2016 server. Remember to keep all your pictures and files within your team's namespace or at least include your team's name in the file name. <br />
 
When you upload, set the "Destination Filename" to <code>Team:YourOfficialTeamName/NameOfFile.jpg</code>. (If you don't do this, someone else might upload a different file with the same "Destination Filename", and your file would be erased!)</p>
 
 
 
<div class="button_click"  onClick=" parent.location= 'https://2016.igem.org/Special:Upload '"> 
 
UPLOAD FILES
 
</div>
 
 
</div>
 
 
 
 
  
  

Revision as of 22:50, 30 June 2016

Description summary:

CRISPR-Cas9 has already revolutionized synthetic biology. To build upon this development we aim to implement digital-like circuits in yeast using a CRISPR-associated RNA scaffold system (Zalatan et al, 2015). Recently, a study published the use of the modular software CELLO which automates the design of DNA circuits using transcription factors in E. coli. As a proof of concept we will modify CELLO to use our dCas9 transistors in yeast for a so-called half-adder system, using AND and XOR gates, that we can then experimentally assess. With this approach we hope to pave the way for even more complex biological circuits in yeasts.

What have we done?

We started brainstorming in December and quickly decided to work on the creation of a biological circuit.
We were inspired by the EPFL’s 2015 iGEM team, who worked on bioLOGIC. This system uses a catalytically dead version of Cas9 fused with an RNA Polymerase recruiting element (VP64) to create transistors, and depending on the identity of the promoter that dCas9-VP64 binds, it will either be repressed or activated.

At first, we created brainstorming groups to find applications of the project. The idea of creating a half-adder stood out from the rest for its possible applications as well as its suitability as a proof of concept. Later, we discovered a program called CELLO that automates the design of DNA based logic circuits.

At this point, we split into two groups. The first group worked on the design of the system, the second on the understanding of Cello’s software in order to implement it with our system.

The project was defined as to create simple gates using biological parts. We wanted to use d-Cas9 to target specific sequences of promoters and therefore be able to activate or repress the expression of the genes controlled by them. In order to build biosensors, we imagined a system that allows our gates to respond differently to various environments, such as presence of galactose.
We also want to implement our system in yeast as they are well representation of mammalian cells and easy to handle. With this system we aim to create an half-adder which correspond to a XOR and an AND gate linked together.

As mentioned before, we also plan to modify CELLO to be able to design genetic circuits in yeast using it. Fortunately, CELLO has a modular nature, allowing us to do this easily. CELLO has a User Constraint File that enables users to pass the program information about this system it is designing the circuit for. This file includes information pertaining to the species, the reactivity of gates to inputs, and the plasmids used. In order to obtain this new information, we plan on characterizing our system and gates using photometric experiments.

During the process of designing our system, we stumbled upon a paper outlining a more intuitive way to activate and inhibit genes with dCas9, and we decided to improve our project using its results.

This paper describes synthetic dcas9-based transcriptional programs in yeast. Instead of having the dcas9 unit fused to an activator or repressor protein, the guide RNA is extended to include an effector protein recruitment site, so that scaffold RNAs that encode both target locus and regulatory action.

Using a dCas9 based system with scaffold guide RNAs offers numerous advantages with regards to previous biological circuit designing systems. Firstly, using gRNAs as parts of gates, instead of transcription factors reduces toxicity related to transcription factor density in the nucleus. In addition, our system can be even more complex than systems based on transcription factors since the amount of connections between gates are not limited by the amount of transcription factors available. Finally, the use of scaffolding RNAs simplifies design, since we can have just one dCas9, and it will also hopefully lead to more predictable repression and activation in the system.