Difference between revisions of "Team:EPFL/Design"

(Prototype team page)
 
(first draft project design)
Line 1: Line 1:
{{EPFL}}
+
{{RISE_head}}
 
<html>
 
<html>
  
 +
        <div class="simple-page">
 +
            <section>
 +
                <div class="container">
 +
                    <div class="col-md-10 col-md-offset-1">
 +
                        <h2 class="lead animate-box text-center">Design</h2>
 +
                        <div class="spacer h20"></div>
 +
                        <hr class="animate-box"/>
 +
                        <div class="spacer h20"></div>
 +
                        <p class="sub-lead text-justify animate-box">
 +
                            The main goal of our project was to improve the design of biological circuits in eukaryotic cells by developing modular and intuitive tools. These tools comprised a modular promoter, efficient repression of genes and inducibility for real world applications. As a proof of concept, we aimed to create actual gates based on our designs. Here is a deeper immersion into how and why we choosed the parts we used to fulfill the objectives we set ourselves.
 +
                        </p>
 +
                    </div>
 +
                </div>
 +
            </section>
 +
        </div>
 +
        <div class="simple-page animate-box">
 +
            <section>
 +
                <div class="container">
 +
                    <div class="col-md-10 col-md-offset-1">
 +
                        <h2>Finding a modular promoter</h2>
 +
                        <div class="spacer h20"></div>
 +
                        <hr/>
 +
                        <div class="spacer h20"></div>
 +
                    </div>
 +
                    <div class="col-md-10 col-md-offset-1">
 +
                        <p class="sub-lead">
 +
                            The modularity of the promoter is a central point to biological circuits in general and therefore to our project too. We were inspired by last year’s iGEM EPFL project which also focused on finding efficient ways to build logic gates in cells. This team worked with a minimal promoter called CYC1 and we followed in their footsteps. The advantage of this promoter is that the sequence can be modified, without changing the expression of downstream genes (<a href="#TOLINK">see figure 1</a>).
 +
                        </p>
 +
                        <p class="text-center">
 +
                          <img class="" src="img/figures/design/modularity.png" alt="" width="50%" height="50%">
 +
                        </p>
 +
                    </div>
 +
                </div>
 +
            </section>
 +
        </div>
 +
        <!--
 +
        <div class="centered-page">
 +
            <section class="lightGray">
 +
                <div class="container">
 +
                    <div class="col-md-6 animate-box col-md-offset-1-text-centre " >
 +
                        <div class="spacer h40"></div>
 +
-->
 +
                        <!--NTH: qualità -->
 +
                        <!--
 +
                        <img class="" src="img/figures/design/modularity.png" alt="" >
 +
                        <div class="spacer"></div>
 +
                        <span>FIGURE 1:  CYC1 INTERCHANGEABLE SECTIONS</span>
  
<div class="column full_size judges-will-not-evaluate">
+
                        <div class="spacer h40"></div>
<h3>★  ALERT! </h3>
+
                    </div>
<p>This page is used by the judges to evaluate your team for the <a href="https://2016.igem.org/Judging/Awards#Special_Prizes"> design special prize</a>. </p>
+
                </div>
 +
            </section>
 +
        </div>
 +
      -->
 +
        <div class="simple-page animate-box">
 +
            <section>
 +
                <div class="container">
 +
                    <div class="col-md-10 col-md-offset-1">
 +
                        <p class="sub-lead">
 +
                            Moreover, the locations of these interchangeable parts are very convenient. One of them is located at the beginning of the promoter. When targeting a gRNA recruiting a transcriptional activator to it, either through a scaffold or fusion to dCas9, expression of the promoter is increased. Another is positioned very close to the TATA box and repression of the downstream gene is observed when a gRNA in complex with dCas9 is present on this site (<a href="#TOLINK">see figure 2</a>).
 +
                        </p>
 +
                    </div>
 +
                </div>
 +
            </section>
 +
        </div>
 +
        <div class="centered-page">
 +
            <section class="lightGray">
 +
                <div class="container">
 +
                    <div class="col-md-12 animate-box">
 +
                        <div class="spacer h40"></div>
 +
                        <!--NTH: qualità -->
 +
                        <img class="" src="img/figures/design/C3C6.png" alt="">
 +
                        <div class="spacer"></div>
 +
                        <span>FIGURE 2: C3-C6</span>
 +
                        <!--TODO: mettere gli id ancore su tutte le figure-->
 +
                        <div class="spacer h40"></div>
 +
                    </div>
 +
                </div>
 +
            </section>
 +
        </div>
 +
        <div class="simple-page animate-box">
 +
            <section>
 +
                <div class="container">
 +
                    <div class="col-md-10 col-md-offset-1">
 +
                        <p class="sub-lead">
 +
                            These two special features allow us to design different versions of the promoter almost ad infinitum and avoid cross-talk between the different elements of the circuit. It means that when a gRNA is produced, it can only target a single region of a particular CYC promoter and does not interfere with the other ones (see figure 3). Therefore, all the CYC variants can be induced or repressed when required and assembled together to easily design complex gates.
 +
                            <!--TOASK: niente see figure 3?-->
 +
                        </p>
 +
                        <p class = "text-center">
 +
                              <img class="" src="img/figures/design/offtarget.png" alt="" width = "50%" height="50%">
 +
                        </p>
 +
                    </div>
 +
                </div>
 +
            </section>
 +
        </div>
 +
        <!--
 +
        <div class="centered-page">
 +
            <section class="lightGray">
 +
                <div class="container">
 +
                    <div class="col-md-12 animate-box">
 +
                        <div class="spacer h40"></div>
 +
        -->
 +
                        <!--NTH: qualità -->
 +
        <!--
 +
                        <img class="" src="img/figures/design/offtarget.png" alt="">
 +
                        <div class="spacer"></div>
 +
                        <span>FIGURE 3: NO CROSS-TALK CYC1 AND CYC2</span>
  
 +
      -->
 +
                        <!--TODO: mettere gli id ancore su tutte le figure-->
  
<p> Delete this box in order to be evaluated for this medal. See more information at <a href="https://2016.igem.org/Judging/Pages_for_Awards/Instructions"> Instructions for Pages for awards</a>.</p>
+
      <!--
</div>
+
                        <div class="spacer h40"></div>
 +
                    </div>
 +
                </div>
 +
            </section>
 +
        </div>
 +
      -->
 +
        <div class="simple-page animate-box">
 +
            <section>
 +
                <div class="container">
 +
                    <div class="col-md-10 col-md-offset-1">
 +
                        <h2>Repressor in yeasts:</h2>
 +
                        <div class="spacer h20"></div>
 +
                        <hr/>
 +
                        <div class="spacer h20"></div>
 +
                    </div>
 +
                    <div class="col-md-10 col-md-offset-1">
 +
                        <p class="sub-lead">
 +
                            The first real challenge came with finding a repressor that was efficient. This was a determinant step because biological circuits require a way to repress expression of the genes in order to process information and act on the cell. As <a href="#TOLINK">Zalatan et al., 2015</a> did not focus on repressing genes in yeasts but only in mammalian cells, we had to find our own way to do it. After some research, we found a repressor that had already been used for biological circuits and that showed efficient repression when fused with dCas9: Mxi1 (<a href="#TOLINK">Gilberts et al., 2013</a>). Originally, Mxi1 is a mammalian transcriptional repressor which drives deacetylation of the DNA and is also active in yeasts. We were not sure what to expect about the level of repression of Mxi1 when recruited and not fused to dCas9. What we were sure of however, was that we had to try and test it! To give ourselves the best chance to succeed, we also created a scRNA with two recruiting scaffolds attached to it to recruit two Mxi1 at the same time and see if repression was more efficient (<a href="#TOLINK">see figure 4</a>).
  
 +
                        </p>
 +
                    </div>
 +
                    <div class="col-md-12 text-center">
 +
                        <div class="spacer h40"></div>
 +
                        <img class="" src="img/figures/design/1_et_2_xPP7.png" alt="" height="50%" width="50%">
 +
                        <div class="spacer"></div>
 +
                        <span>FIGURE 4: 1xPP7 and 2XPP7</span>
 +
                        <!--TODO: mettere gli id ancore su tutte le figure-->
 +
                        <div class="spacer h40"></div>
 +
                    </div>
 +
                    <div class="col-md-10 col-md-offset-1">
 +
                        <p class="sub-lead">
 +
                            The first real challenge came with finding a repressor that was efficient. This was a determinant step because biological circuits require a way to repress expression of the genes in order to process information and act on the cell. As <a href="#TOLINK">Zalatan et al., 2015</a> did not focus on repressing genes in yeasts but only in mammalian cells, we had to find our own way to do it. After some research, we found a repressor that had already been used for biological circuits and that showed efficient repression when fused with dCas9: Mxi1 (<a href="#TOLINK">Gilberts et al., 2013</a>). Originally, Mxi1 is a mammalian transcriptional repressor which drives deacetylation of the DNA and is also active in yeasts. We were not sure what to expect about the level of repression of Mxi1 when recruited and not fused to dCas9. What we were sure of however, was that we had to try and test it! To give ourselves the best chance to succeed, we also created a scRNA with two recruiting scaffolds attached to it to recruit two Mxi1 at the same time and see if repression was more efficient (<a href="#TOLINK">see figure 4</a>).
 +
                        </p>
 +
                    </div>
 +
                </div>
 +
            </section>
 +
        </div>
 +
        <div class="simple-page animate-box">
 +
            <section>
 +
                <div class="container">
 +
                    <div class="col-md-10 col-md-offset-1">
 +
                        <h2>Inducibility:</h2>
 +
                        <div class="spacer h20"></div>
 +
                        <hr/>
 +
                        <div class="spacer h20"></div>
 +
                    </div>
 +
                    <div class="col-md-10 col-md-offset-1">
 +
                        <p class="sub-lead">
 +
                            With our construct, we aim to create efficient biosensors, and therefore we had to find a way to make our system responsive to specific inputs like proteins or chemical compounds in the environment it is exposed to. To prove that our transistors could provoke a different response according to the molecules they encounter, we chose to work with the inducible promoter GAL1, induced by galactose, and the constitutive one TDH3. When galactose is absent from the medium, GAL1 is repressed and TDH3 is expressed. TDH3 then drives the expression of GFP, therefore making the cells fluorescent green. When galactose is added to the environment, the expression pattern of the cell changes: GAL1 is not repressed anymore and can express RFP along with a gRNA that is designed to bind to TDH3 and inhibit it sterically by CRISPRi.
 +
                        </p>
  
 +
                        <!--
 +
                    </div>
  
<div class="column full_size">
+
                    <div class="col-md-12 text-center">
 +
                        <div class="spacer h40"></div>
 +
                        <img class="" src="img/figures/design/galactose_promoter.png" alt="">
 +
                        <div class="spacer"></div>
 +
                        <span>FIGURE 5: GAL1-GFP / TDH3-RFP W/ AND W/O GALACTOSE</span>
 +
                        <!--TODO: mettere gli id ancore su tutte le figure-->
 +
                        <!--
 +
                        <div class="spacer h40"></div>
 +
                    </div>
  
  
<p>
+
                </div>
By talking about your design work on this page, there is one medal criterion that you can attempt to meet, and one award that you can apply for. If your team is going for a gold medal by building a functional prototype, you should tell us what you did on this page.
+
              -->
</p>
+
            </section>
 +
        </div>
 +
<!-- Rémy test un truc pour le style ouech-->
  
 +
        <div class="centered-page">
 +
            <section class="lightGray">
 +
                <div class="container">
 +
                    <div class="col-md-12 animate-box">
 +
                        <div class="spacer h40"></div>
 +
                        <!--NTH: qualità -->
 +
                        <img class="" src="img/figures/design/galactose_promoter.png" alt="">
 +
                        <div class="spacer"></div>
 +
                        <span>FIGURE 5: GAL1-GFP / TDH3-RFP W/ AND W/O GALACTOSE </span>
 +
                        <!--TODO: mettere gli id ancore su tutte le figure-->
 +
                        <div class="spacer h40"></div>
 +
                    </div>
 +
                </div>
 +
            </section>
 +
        </div>
  
<p>This is a prize for the team that has developed a synthetic biology product to solve a real world problem in the most elegant way. The students will have considered how well the product addresses the problem versus other potential solutions, how the product integrates or disrupts other products and processes, and how its lifecycle can more broadly impact our lives and environments in positive and negative ways.</p>
 
  
<p>
 
If you are working on art and design as your main project, please join the art and design track. If you are integrating art and design into the core of your main project, please apply for the award by completing this page.
 
</p>
 
  
  
<p>Teams who want to focus on art and design should be in the art and design special track. If you want to have a sub-project in this area, you should compete for this award.</p>
+
        <div class="simple-page animate-box">
</div>
+
            <section>
 +
                <div class="container">
 +
                    <div class="col-md-10 col-md-offset-1">
 +
                        <h2>Gates</h2>
 +
                        <div class="spacer h20"></div>
 +
                        <hr/>
 +
                        <div class="spacer h20"></div>
 +
                    </div>
 +
                    <div class="col-md-10 col-md-offset-1">
 +
                        <p class="sub-lead">
 +
                            The final step of our project was to design actual logic gates that would allow the cells implemented with them to process useful information and respond dynamically to it. We imagined various classical gates with the scaffold system such as NOR, AND and XOR.
 +
                        </p>
 +
                    </div>
 +
                  </div>
 +
                </section>
 +
              </div>
  
 +
           
 +
              <div class="centered-page">
 +
                  <section class="lightGray">
 +
                      <div class="container">
 +
                        <div class="col-md-12 text-center">
 +
                            <div class="spacer h40"></div>
 +
                            <img class="" src="img/figures/design/not_gate.png" alt="">
 +
                            <div class="spacer"></div>
 +
                            <span>FIGURE 6: DESIGN « AND » GATE ??</span>
 +
                            <!--TODO: mettere gli id ancore su tutte le figure-->
 +
                            <div class="spacer h40"></div>
 +
                        </div>
 +
                      </div>
 +
                    </section>
 +
                  </div>
  
  
 +
 +
 +
          <div class="simple-page animate-box">
 +
              <section>
 +
                  <div class="container">
 +
 +
                    <div class="col-md-10 col-md-offset-1">
 +
                        <p class="sub-lead">
 +
                            These gates always comprised inducible promoters to convert the presence or absence of the molecules we want to detect to a signal in the form of scRNA that our circuit can interpret. The only issue was that the gates were conceived in such a way that activator and repressor scRNAs were binding to the same promoter at the same time. It raised an interesting question: who wins between the two scRNA? We hypothesized that repression was the strongest, as Mxi1 deacetylates DNA and leads to its condensation (see figure ). When DNA is compacted, the activator gRNA should not be able to bind anymore, making it powerless.
 +
                        </p>
 +
                    </div>
 +
                    <div class="col-md-12 text-center">
 +
                        <div class="spacer h40"></div>
 +
                        <img class="" src="img/figures/design/activation_vs_repression.png" alt="" height="50%" width="50%">
 +
                        <div class="spacer"></div>
 +
                        <span>FIGURE REPRESSION VS ACTIVATION</span>
 +
                        <!--TODO: mettere gli id ancore su tutte le figure-->
 +
                        <div class="spacer h40"></div>
 +
                    </div>
 +
                    <div class="col-md-10 col-md-offset-1">
 +
                        <p class="sub-lead">
 +
                            To prove that our design was functional, we produced two scRNA at the same time, an activating one and a repressing one, targeting the same promoter and monitored its response.
 +
                        </p>
 +
                        <p class="sub-lead">
 +
                            Finally, we wanted to create a real gate and we chose the NOT gate. We decided to do so to prove that our separated experiments could be brought together to make a functional and inducible gate.
 +
                        </p>
 +
                    </div>
 +
                </div>
 +
            </section>
 +
        </div>
  
  
 
</html>
 
</html>
 +
{{RISE_foot}}

Revision as of 12:11, 19 October 2016

iGEM EPFL 2016

Design


The main goal of our project was to improve the design of biological circuits in eukaryotic cells by developing modular and intuitive tools. These tools comprised a modular promoter, efficient repression of genes and inducibility for real world applications. As a proof of concept, we aimed to create actual gates based on our designs. Here is a deeper immersion into how and why we choosed the parts we used to fulfill the objectives we set ourselves.

Finding a modular promoter


The modularity of the promoter is a central point to biological circuits in general and therefore to our project too. We were inspired by last year’s iGEM EPFL project which also focused on finding efficient ways to build logic gates in cells. This team worked with a minimal promoter called CYC1 and we followed in their footsteps. The advantage of this promoter is that the sequence can be modified, without changing the expression of downstream genes (see figure 1).

Moreover, the locations of these interchangeable parts are very convenient. One of them is located at the beginning of the promoter. When targeting a gRNA recruiting a transcriptional activator to it, either through a scaffold or fusion to dCas9, expression of the promoter is increased. Another is positioned very close to the TATA box and repression of the downstream gene is observed when a gRNA in complex with dCas9 is present on this site (see figure 2).

FIGURE 2: C3-C6

These two special features allow us to design different versions of the promoter almost ad infinitum and avoid cross-talk between the different elements of the circuit. It means that when a gRNA is produced, it can only target a single region of a particular CYC promoter and does not interfere with the other ones (see figure 3). Therefore, all the CYC variants can be induced or repressed when required and assembled together to easily design complex gates.

Repressor in yeasts:


The first real challenge came with finding a repressor that was efficient. This was a determinant step because biological circuits require a way to repress expression of the genes in order to process information and act on the cell. As Zalatan et al., 2015 did not focus on repressing genes in yeasts but only in mammalian cells, we had to find our own way to do it. After some research, we found a repressor that had already been used for biological circuits and that showed efficient repression when fused with dCas9: Mxi1 (Gilberts et al., 2013). Originally, Mxi1 is a mammalian transcriptional repressor which drives deacetylation of the DNA and is also active in yeasts. We were not sure what to expect about the level of repression of Mxi1 when recruited and not fused to dCas9. What we were sure of however, was that we had to try and test it! To give ourselves the best chance to succeed, we also created a scRNA with two recruiting scaffolds attached to it to recruit two Mxi1 at the same time and see if repression was more efficient (see figure 4).

FIGURE 4: 1xPP7 and 2XPP7

The first real challenge came with finding a repressor that was efficient. This was a determinant step because biological circuits require a way to repress expression of the genes in order to process information and act on the cell. As Zalatan et al., 2015 did not focus on repressing genes in yeasts but only in mammalian cells, we had to find our own way to do it. After some research, we found a repressor that had already been used for biological circuits and that showed efficient repression when fused with dCas9: Mxi1 (Gilberts et al., 2013). Originally, Mxi1 is a mammalian transcriptional repressor which drives deacetylation of the DNA and is also active in yeasts. We were not sure what to expect about the level of repression of Mxi1 when recruited and not fused to dCas9. What we were sure of however, was that we had to try and test it! To give ourselves the best chance to succeed, we also created a scRNA with two recruiting scaffolds attached to it to recruit two Mxi1 at the same time and see if repression was more efficient (see figure 4).

Inducibility:


With our construct, we aim to create efficient biosensors, and therefore we had to find a way to make our system responsive to specific inputs like proteins or chemical compounds in the environment it is exposed to. To prove that our transistors could provoke a different response according to the molecules they encounter, we chose to work with the inducible promoter GAL1, induced by galactose, and the constitutive one TDH3. When galactose is absent from the medium, GAL1 is repressed and TDH3 is expressed. TDH3 then drives the expression of GFP, therefore making the cells fluorescent green. When galactose is added to the environment, the expression pattern of the cell changes: GAL1 is not repressed anymore and can express RFP along with a gRNA that is designed to bind to TDH3 and inhibit it sterically by CRISPRi.

FIGURE 5: GAL1-GFP / TDH3-RFP W/ AND W/O GALACTOSE

Gates


The final step of our project was to design actual logic gates that would allow the cells implemented with them to process useful information and respond dynamically to it. We imagined various classical gates with the scaffold system such as NOR, AND and XOR.

FIGURE 6: DESIGN « AND » GATE ??

These gates always comprised inducible promoters to convert the presence or absence of the molecules we want to detect to a signal in the form of scRNA that our circuit can interpret. The only issue was that the gates were conceived in such a way that activator and repressor scRNAs were binding to the same promoter at the same time. It raised an interesting question: who wins between the two scRNA? We hypothesized that repression was the strongest, as Mxi1 deacetylates DNA and leads to its condensation (see figure ). When DNA is compacted, the activator gRNA should not be able to bind anymore, making it powerless.

FIGURE REPRESSION VS ACTIVATION

To prove that our design was functional, we produced two scRNA at the same time, an activating one and a repressing one, targeting the same promoter and monitored its response.

Finally, we wanted to create a real gate and we chose the NOT gate. We decided to do so to prove that our separated experiments could be brought together to make a functional and inducible gate.