Difference between revisions of "Team:Groningen/Integrated Practices"

 
(49 intermediate revisions by 2 users not shown)
Line 5: Line 5:
 
<h2 class="centrate"> <strong> Human Practices Projects of CryptoGErM </strong> </h2>
 
<h2 class="centrate"> <strong> Human Practices Projects of CryptoGErM </strong> </h2>
 
         </section>
 
         </section>
 +
 +
        <section>
 
<h3 class="centrate"> <strong> Beyond the lab… To the understanding of the world </strong> </h3>
 
<h3 class="centrate"> <strong> Beyond the lab… To the understanding of the world </strong> </h3>
  
<p>Science is not an isolate entity, it is dynamical because it influences and it is influence by other fields. Science is part of a complex society, and as a result of this relationship it is important to explore ethically and objectively all the social aspects related to the development of a scientific project. </p>
+
<p>We invite you to discover how CryptoGErM was shaped for Human Practices and how we integrate the results of the small projects </p>
  
<p>When carrying on a project, we must not forget that we want to impact society, make a change based on its necessities and offer solutions to current problems that affect it, but at the same time, we have to take care of protecting our environment by performing experiments consciously. Besides that, as a part of a society, we must obey legal legislations to preserve the order and the safety within the community. As it can be seen, science is not limited to the work in a laboratory; it implies a real understanding of the world. </p>
+
                <p><strong>A detailed description can be found in every link</strong></p>
  
<p>We decided to divide CrypoGErM Human Practices into small projects called Social (Contact with experts and society) Legal (Understanding current legislations) Educational (Approach students) Outreach (Approach society to promote synthetic biology and our Project) and Future scenarios (Deep understanding of the implications of using our system). The activities carried on by CryptoGErM are linked intrinsically between each other and with the whole project itself and they represent an understanding of different social fields, of how this understanding was integrated to shape our project.</p>
+
<p>We contacted experts from the Cyber Security Centre from the Ministry of Security and Justice from the Netherlands, institution in charge of the cyber security in our country, to know what are the real challenges that they have to face in the field of encryption. This Institution made <a href="/Team:Groningen/HP/Social">comments on our project</a>, they told us that generally when a system is intended for the sending of information rather than just storing it, two questions are important:</p>
 +
      </section>
 +
        <figure>
 +
        <img src="https://static.igem.org/mediawiki/2016/b/b7/T--Groningen--Social-social1.png" alt="social1" />
 +
        </figure>
 +
        <div class="split">
 +
          <div class="left fltwo">   
 +
<p>The National Institution told us that when the message and the key are sent together in the same package the probability that the information is intercepted and decrypted is really high, therefore it must be ensured that either, the key, the message or both are safe and cannot be accessed easily. To approach that, we designed biological security layers to provide an extra lock. You and your receiver agreed on a biological key beforehand. Only with the biological key, the right treatment of the spores, the DNA of the <em>Bacillus subtilis</em> culture can be harvested and the genome will be sequenced. A wrong treatment will cause the loss of the desired DNA sequence and therefore the message cannot be read anymore. </p>
  
<p> Each of the activities started with a quote, to wake up your curiosity and give you a general perspective of the activities carried on for each project. So we invite you to take a look and discover with us why CryptoGErM goes beyond the lab… To an understanding of the world</p>
+
<p>To make it especially hard for unauthorized parties to access our key, the key-spores will be sent in a mixture of decoy spores. The decoy spores are present in a much higher ratio than the key-spores. The key-spores have to be recovered using a specific selection mechanism. We have developed a ciprofloxacin resistance cassette that can be integrated into the <em>B. subtilis</em> genome. Only the knowledge of this specific selection antibiotic will allow the recovery.</p>
           </section>
+
<p>After that contact, we realized that not only governments but also private companies could be interested in using our system. But, which requirements? Would private companies or institutions be interested in using CryptoGErM? Would be able to adapt our system to the conditions required for real users? Is it our system better in comparison with current technologies for the storing and sending of information?</p>
 +
            </div>
 +
           <div class="right flone">
 +
              <figure>
 +
              <img src="https://static.igem.org/mediawiki/2016/0/03/T--Groningen--tour-mediumdead.png" alt="tour" style=" width: 220px; height:425px;" />
 +
                <figcaption class="centrate">Under the wrong treatment, it will not be possible to retrieve the message</figcaption>
 +
              </figure>
 +
      </div>
 +
      </div>
 +
       
 +
        </section>
 +
        <section>
 +
        <div class="split">
 +
        <div class="right fltwo">
 +
<p>After that contact, we realized that not only governments could use our system, also private companies could be interested in using our system. We interviewed a potential user, the Groningen Archives; they store the entire historical information related with the province of Groningen in the Netherlands. As a result of this interview, we learned that paper (it is often the medium used for the storing of historical information) requires specific conditions that sometimes are not suitable for long-term storing, because they consume resources. In addition to that, paper it is a suitable for information storage just for a couple of hundreds of years. Actually, this Institution has been prepared for the change from physical to digital storing for the last years. The advantages of storing information in DNA is that spores are highly resistant entities that can survive harsh environments; actually spore of <em>Bacillus subtilis</em> can be found after several million years, as shown for the discoveries done in the last years. Besides that, DNA can store up to 10<sup>9</sup> GB/mm<sup>3</sup> which is a regally high density compared with the current technologies that can store only 10 GB/mm<sup>3</sup>; furthermore, the spores do not need strict environment for their conservation in comparison with paper or digital storage.</p>
  
          <section>
+
<p>We learned also that a system intended for the long-term storing of information must be ensured with storability and accessibility, i. e. the nature of the medium used for the storing does not matter as long as it is insured that the stored information is completely preserved. He told us that DNA is a considerable option if the information does not though mutations. Therefore, we modelled how many times the random mutations could be present in our message by using computational tools, and we concluded that for our specific case the impact of the random mutations influencing our project was extremely low and that we could have safely saved our message.</p>
<h3> <strong> <a href="/Team:Groningen/HP/Social/"> Social </a> </strong> </h3>
+
              <div class="split">
+
                  <div class="left flone">
+
 
+
<p> The project started as an idea for the storing of sensitive information. Throughout the development of the project, we got in contact with experts from the National Institutions of our country to know which are the current challenges in the area of cyber security, and what would be the requirements that a system for the storing and sending of information must fulfill; we took this to shape our project. Also, we interviewed with a potential user that might use our system for the long-term storing of information. Finally, we carried on a global survey to know what are the current perceptions about synthetic biology, cybersecurity and storing of information of information and shaped our project based on those results. </p>
+
              </div>
+
            <div class="right flone">
+
            <img src="https://static.igem.org/mediawiki/2016/d/d0/T--Groningen--Social-social5.png" alt="social5" />
+
            </div>
+
 
           </div>
 
           </div>
          </section>
+
        <div class="left flone">
 +
            <figure>
 +
            <img src="https://static.igem.org/mediawiki/2016/d/d0/T--Groningen--Social-social5.png" alt="social" />
 +
              <figcaption class="centrate">DNA, the next generation in the storing of information</figcaption>
 +
            </figure>
 +
      </div>
 +
      </div>
 +
      <section>
  
          <section>
+
<p>Additionally to the experts and the potential users, we started a survey to know what is the current perception of the society about the storing and sending of information. We wanted to achieve an extensive and broad range of people from different backgrounds and nationalities; however, though the years we have found out that most of the survey conducted by iGEM teams are in English which excludes people that do not speak this language; therefore, we developed versions of our survey in different languages together with iGEM Teams who shared them in their social media. Originally the survey was developed together with a psychologist to assure that the questions and the structure were correct to obtain the information intended.</p>
              <div class="split">
+
                  <div class="right flone">
+
<h3> <strong> <a href="/Team:Groningen/HP/Legal/"> Legal</a> </strong> </h3>
+
  
<p> Is the sending of GMOs well regulated nowadays? What is the current legislation in the Netherlands, Europe and the whole world under what our system? We looked into the existing National and International legislations for the sending of GMOs for the design of the sending part of our project. </p>
+
<p>Once the system fulfilled the requirements from experts, users and society; the next step was to explore the regulations for the <a href="/Team:Groningen/HP/Legal">shipping of our spores</a> containing the encrypted information.</p>
 +
    </section>
 +
 
 +
      <section>
 +
      <div class="split">
 +
      <div class="right flone">
 +
<p>The idea of our system is that the encrypted information contained on bacteria can be shipped freely around the world. So, the next important step for the Human Practices and was to look for the national and international legislations that regulate the sending of GMOs, to avoid potential risks to the environment and society. We contacted the National Institute for Public Health and the Environment for guidance in the Dutch Regulations. We found out what is the correct way for the sending of GMOs using conventional methods, such as post. GMOs receive a classification according to its nature, focusing on the fact if the GMOs meet the definition of infectious substances; in our case, the <em>Bacillus subtilis</em> spores with the message are not within this concept and they are assigned to the labelling UN3245. Besides that, we found out that for the shipping of GMOs we must use packings with strict specifications, for example, we used an leakproof envelopment using the labelling mentioned before. We discussed explicitly this in our <a href="/Team:Groningen/HP/Legal">legal section of Human Practices.</a></p>
 +
      </div>
 +
      <div class="left flone">
 +
          <figure>
 +
        <img src="https://static.igem.org/mediawiki/2016/7/7f/T--Groningen--Legal-legal5.png" alt="legal" />
 +
          <figcaption class="centrate">Our spores containing the message and the key moments before being sent</figcaption>
 +
            </figure>
 +
      </div>
 +
      </div>
 +
    </section>
 +
    <section>
 +
        <div class="split">
 +
                <div class="left flone">
 +
<p>The next step was looking for international regulations; we realized that the International shipping of GMOs is regulated from different legislations depending on the country that is intended for the access of the GMOs. We consulted the three more important guidelines and regulations for the sending to America, Europe and Asia of our system, the Cartagena Protocol in Biosafety, the national legislations from non-parties of the Cartagena Protocol and the guidelines of the World Health Organisation. In the case we want to send to countries outside Europe our <em>Bacillus subtilis</em> spores, we must follow those guidelines. </p>
 
                 </div>
 
                 </div>
                <div class="left flone">
+
          <div class="right flone">
                <img src="https://static.igem.org/mediawiki/2016/7/7f/T--Groningen--Legal-legal5.png" alt="legal5" />
+
            <h4>Sending of spores to our collaborators</h4>
                </div>
+
          <video controls preload="metadata">
                </div>
+
<source src="https://static.igem.org/mediawiki/2016/b/b6/T--Groningen--Results-sporesending.mp4" />
          </section>
+
</video>
+
          </div>
          <section>  
+
      </div>
              <div class="split">
+
</section>
                <div class="left flone">
+
<section>
<h3> <strong> <a href="/Team:Groningen/HP/Educational/"> Educational </a> </strong> </h3>
+
<p>We decided to <a href="/Team:Groningen/HP/Future">explore different aspects of our project</a> and the repercussions of its introduction as a daily-used system in the near and long future. These scenarios were based on current evidence and scientific researches. We present this fictional scenarios as digital newspapers, following the prediciton that by 2040 the physical newspapers will disappear. We explore the applications of our project that may result of the advantages that DNA has over others storage medium, such as minimal physical space and high density of storing; for example, we can store 10<sup>9</sup> GB/mm<sup>3</sup> in DNA leading to a decrease in the physical space required for the storing. This also leads to a high capacity to store large amount of data in DNA of bacteria.</p>
 
+
    </section>
<p>We received 115 students to do an activity called BIO-Art! Painting with bacteria, to get them in contact with synthetic biology if a fun and interactive way, besides that, we gave a lecture on synthetic biology and our project to these future scientists. But besides that, we went deeper in our educational activities; we were the mentors of 9 High School students that developed practical work in our laboratory for their High School Thesis. </p>
+
    <section>
              </div>
+
          <div class="split">
              <div class="right flone">
+
          <div class="left flone">
                <img src="https://static.igem.org/mediawiki/2016/6/6a/T--Groningen--Education-day1.jpg" alt="day1" />
+
<p> In our future scenarios we explored the cost and speed of sequencing DNA and the predictions made for those two in the upcoming years. The last step of our project includes the sequencing of the DNA that contains the key and the message, so it was important for us to know the current price and time required for reading our message. We found that the current price for sequencing a Megabase (less than one dollar) of DNA and that the time to read our message would be two hours if the laboratory have the required. One thing that support the use of our system in the near future is that the experts predict that in the near future the techniques used for the DNA sequencing will become better, cheaper and faster.</p>
              </div>
+
      </section>
+
 
+
      <section>
+
<h3> <strong> <a href="/Team:Groningen/HP/Outreach/"> Outreach </a> </strong> </h3>
+
 
+
<p> One of our main goals is to make part of our project as many people as possible. For such goal, we got interview by the local radio from the North of the Netherlands and several newspapers dedicated articles to our project; including an article and a video from the Dutch National News Agency!. Also, we gave a workshop during the Campus Party 2016 in the city of Utrecht, the Netherlands to young scientists promoting synthetic biology, iGEM and CryptoGErM. </p>
+
   
+
                <img src="https://static.igem.org/mediawiki/2016/d/d8/T--Groningen--Integrated-integarted1.jpg" alt="integrated1" />
+
 
+
        <section>
+
<h3> <strong> <a href="/Team:Groningen/HP/Future/"> Future </a> </strong> </h3>
+
 
+
<p> What would be the repercussions of having a digitally “uncrackable” system? Is the society ready for such a system? How the current storing and sending of information would be changed by the introduction of our system? We explored future fictional scenarios that illustrates the potential applications of introducing our project to the market, these scenarios are based on current and real evidence </p>
+
  
              <img src="https://static.igem.org/mediawiki/2016/f/fc/T--Groningen--Legal-future1.png" alt="future1" />
+
<p>In addition, we created a fictional scenario where we explore the potential application of our system for the long-term information storage, because researches have shown that <em>Bacillus subtilis</em> spores can last intactly for thousands or even million of years. This fact give the opportunity for our system to be used as a capsule time.</p>
</section>
+
        </div>
</article>
+
          <div class="right flone">
 +
              <figure>
 +
                <img src="https://static.igem.org/mediawiki/2016/f/fc/T--Groningen--Legal-future1.png" alt="future" />
 +
                <figcaption>An example of a fictional digital new of our future scenarios</figcaption>
 +
                </figure>
 +
          </div>
 +
        </div>
  
 +
<p> Finally we also did an extensive research about the current type of information that has been stored in DNA, and we found out that a company has successfully stored this year images in DNA; besides that we have successfully stored a complete message in the DNDA of <em>Bacillus subtilis</em>; as a result of that we present fiction al scenarios where a movie is stored in <em>Bacillus subtilis.</em></p>
 +
      </section>
 +
    </article>
 
</html>
 
</html>
 
{{Groningen/footer}}
 
{{Groningen/footer}}

Latest revision as of 17:55, 19 October 2016

CryptoGE®M
Team
Project
Biology
Computing
Human Practice
Acknowledgements

Human Practices Projects of CryptoGErM

Beyond the lab… To the understanding of the world

We invite you to discover how CryptoGErM was shaped for Human Practices and how we integrate the results of the small projects

A detailed description can be found in every link

We contacted experts from the Cyber Security Centre from the Ministry of Security and Justice from the Netherlands, institution in charge of the cyber security in our country, to know what are the real challenges that they have to face in the field of encryption. This Institution made comments on our project, they told us that generally when a system is intended for the sending of information rather than just storing it, two questions are important:

social1

The National Institution told us that when the message and the key are sent together in the same package the probability that the information is intercepted and decrypted is really high, therefore it must be ensured that either, the key, the message or both are safe and cannot be accessed easily. To approach that, we designed biological security layers to provide an extra lock. You and your receiver agreed on a biological key beforehand. Only with the biological key, the right treatment of the spores, the DNA of the Bacillus subtilis culture can be harvested and the genome will be sequenced. A wrong treatment will cause the loss of the desired DNA sequence and therefore the message cannot be read anymore.

To make it especially hard for unauthorized parties to access our key, the key-spores will be sent in a mixture of decoy spores. The decoy spores are present in a much higher ratio than the key-spores. The key-spores have to be recovered using a specific selection mechanism. We have developed a ciprofloxacin resistance cassette that can be integrated into the B. subtilis genome. Only the knowledge of this specific selection antibiotic will allow the recovery.

After that contact, we realized that not only governments but also private companies could be interested in using our system. But, which requirements? Would private companies or institutions be interested in using CryptoGErM? Would be able to adapt our system to the conditions required for real users? Is it our system better in comparison with current technologies for the storing and sending of information?

tour
Under the wrong treatment, it will not be possible to retrieve the message

After that contact, we realized that not only governments could use our system, also private companies could be interested in using our system. We interviewed a potential user, the Groningen Archives; they store the entire historical information related with the province of Groningen in the Netherlands. As a result of this interview, we learned that paper (it is often the medium used for the storing of historical information) requires specific conditions that sometimes are not suitable for long-term storing, because they consume resources. In addition to that, paper it is a suitable for information storage just for a couple of hundreds of years. Actually, this Institution has been prepared for the change from physical to digital storing for the last years. The advantages of storing information in DNA is that spores are highly resistant entities that can survive harsh environments; actually spore of Bacillus subtilis can be found after several million years, as shown for the discoveries done in the last years. Besides that, DNA can store up to 109 GB/mm3 which is a regally high density compared with the current technologies that can store only 10 GB/mm3; furthermore, the spores do not need strict environment for their conservation in comparison with paper or digital storage.

We learned also that a system intended for the long-term storing of information must be ensured with storability and accessibility, i. e. the nature of the medium used for the storing does not matter as long as it is insured that the stored information is completely preserved. He told us that DNA is a considerable option if the information does not though mutations. Therefore, we modelled how many times the random mutations could be present in our message by using computational tools, and we concluded that for our specific case the impact of the random mutations influencing our project was extremely low and that we could have safely saved our message.

social
DNA, the next generation in the storing of information

Additionally to the experts and the potential users, we started a survey to know what is the current perception of the society about the storing and sending of information. We wanted to achieve an extensive and broad range of people from different backgrounds and nationalities; however, though the years we have found out that most of the survey conducted by iGEM teams are in English which excludes people that do not speak this language; therefore, we developed versions of our survey in different languages together with iGEM Teams who shared them in their social media. Originally the survey was developed together with a psychologist to assure that the questions and the structure were correct to obtain the information intended.

Once the system fulfilled the requirements from experts, users and society; the next step was to explore the regulations for the shipping of our spores containing the encrypted information.

The idea of our system is that the encrypted information contained on bacteria can be shipped freely around the world. So, the next important step for the Human Practices and was to look for the national and international legislations that regulate the sending of GMOs, to avoid potential risks to the environment and society. We contacted the National Institute for Public Health and the Environment for guidance in the Dutch Regulations. We found out what is the correct way for the sending of GMOs using conventional methods, such as post. GMOs receive a classification according to its nature, focusing on the fact if the GMOs meet the definition of infectious substances; in our case, the Bacillus subtilis spores with the message are not within this concept and they are assigned to the labelling UN3245. Besides that, we found out that for the shipping of GMOs we must use packings with strict specifications, for example, we used an leakproof envelopment using the labelling mentioned before. We discussed explicitly this in our legal section of Human Practices.

legal
Our spores containing the message and the key moments before being sent

The next step was looking for international regulations; we realized that the International shipping of GMOs is regulated from different legislations depending on the country that is intended for the access of the GMOs. We consulted the three more important guidelines and regulations for the sending to America, Europe and Asia of our system, the Cartagena Protocol in Biosafety, the national legislations from non-parties of the Cartagena Protocol and the guidelines of the World Health Organisation. In the case we want to send to countries outside Europe our Bacillus subtilis spores, we must follow those guidelines.

Sending of spores to our collaborators

We decided to explore different aspects of our project and the repercussions of its introduction as a daily-used system in the near and long future. These scenarios were based on current evidence and scientific researches. We present this fictional scenarios as digital newspapers, following the prediciton that by 2040 the physical newspapers will disappear. We explore the applications of our project that may result of the advantages that DNA has over others storage medium, such as minimal physical space and high density of storing; for example, we can store 109 GB/mm3 in DNA leading to a decrease in the physical space required for the storing. This also leads to a high capacity to store large amount of data in DNA of bacteria.

In our future scenarios we explored the cost and speed of sequencing DNA and the predictions made for those two in the upcoming years. The last step of our project includes the sequencing of the DNA that contains the key and the message, so it was important for us to know the current price and time required for reading our message. We found that the current price for sequencing a Megabase (less than one dollar) of DNA and that the time to read our message would be two hours if the laboratory have the required. One thing that support the use of our system in the near future is that the experts predict that in the near future the techniques used for the DNA sequencing will become better, cheaper and faster.

In addition, we created a fictional scenario where we explore the potential application of our system for the long-term information storage, because researches have shown that Bacillus subtilis spores can last intactly for thousands or even million of years. This fact give the opportunity for our system to be used as a capsule time.

future
An example of a fictional digital new of our future scenarios

Finally we also did an extensive research about the current type of information that has been stored in DNA, and we found out that a company has successfully stored this year images in DNA; besides that we have successfully stored a complete message in the DNDA of Bacillus subtilis; as a result of that we present fiction al scenarios where a movie is stored in Bacillus subtilis.

Oop top