Line 495: | Line 495: | ||
<p class="title">Omega-hexatoxin-Hv1a (Hv1a)</p> | <p class="title">Omega-hexatoxin-Hv1a (Hv1a)</p> | ||
− | <p class="content">Hv1a is a toxic peptide derived from Hadronyche versuta(Blue Mountains funnel-web spider). It targets the voltage-gated calcium ion channel of insects including species from the orders Lepidoptera, Diptera, Coleoptera, and Dictyoptera. It causes paralysis and finally death. Hv1a is lethal to several insect orders but is not toxic to mice and rabbits.<sup>[2 | + | <p class="content">Hv1a is a toxic peptide derived from Hadronyche versuta(Blue Mountains funnel-web spider). It targets the voltage-gated calcium ion channel of insects including species from the orders Lepidoptera, Diptera, Coleoptera, and Dictyoptera. It causes paralysis and finally death. Hv1a is lethal to several insect orders but is not toxic to mice and rabbits.<sup>[2]</sup></p> |
Line 507: | Line 507: | ||
<div> | <div> | ||
<p class="title">μ-segestritoxin-Sf1a (Sf1a)</p> | <p class="title">μ-segestritoxin-Sf1a (Sf1a)</p> | ||
− | <p class="content">Sf1a is a toxic peptide derived from Segestria florentina (Tube-web spider) It targets the voltage-gated sodium ion channel of insects including species from the orders Lepidoptera and Diptera. It causes paralysis and finally death. Hv1a is lethal to several insect orders but is not toxic to mice. <sup>[ | + | <p class="content">Sf1a is a toxic peptide derived from Segestria florentina (Tube-web spider) It targets the voltage-gated sodium ion channel of insects including species from the orders Lepidoptera and Diptera. It causes paralysis and finally death. Hv1a is lethal to several insect orders but is not toxic to mice. <sup>[3]</sup></p> |
</div> | </div> | ||
Line 517: | Line 517: | ||
<div> | <div> | ||
<p class="title">Orally Active Insecticidal Peptide (OAIP)</p> | <p class="title">Orally Active Insecticidal Peptide (OAIP)</p> | ||
− | <p class="content">OAIP is a toxic peptide derived from Selenotypus plumipes (Australian featherleg tarantula). It targets the voltage-gated ion channel of insects including species from the orders Lepidoptera and Coleoptera. It causes paralysis and finally death. OAIP is lethal to several insect orders but is not toxic to mice. | + | <p class="content">OAIP is a toxic peptide derived from Selenotypus plumipes (Australian featherleg tarantula). It targets the voltage-gated ion channel of insects including species from the orders Lepidoptera and Coleoptera. It causes paralysis and finally death. OAIP is lethal to several insect orders but is not toxic to mice. </p> |
<div> | <div> | ||
Line 524: | Line 524: | ||
</div> | </div> | ||
− | <p class="content">The three toxins are belong to a major category in spider venom-Short peptides that have disulfide bonds. Most of these toxin peptides have a structural motif that contains cysteine knottings and forms loops. The active site in the peptide that performs its toxicity are the amino acids located in loop regions. <sup>[ | + | <p class="content">The three toxins are belong to a major category in spider venom-Short peptides that have disulfide bonds. Most of these toxin peptides have a structural motif that contains cysteine knottings and forms loops. The active site in the peptide that performs its toxicity are the amino acids located in loop regions. <sup>[4]</sup> The structure of these toxins are so-called “Inhibitor Cystine Knot (ICK)”. ICK has several features based on its disulfide-bond-rich structure-Stability. Take Hv1a as an example for proving the stability of ICK; Hv1a is highly stable in the temperature range of -20°C to 75°C and pH values of 1 to 8. Also, Hv1a is resistant to digestive enzyme-protease K. <sup>[5]</sup></p> |
<p class="content">In nature, spiders inject venom into the haemolymph of insects’ that causes the death of the prey. However, Pantide is designed to be ingested by pests after application of Pantide onto the leaves. Therefore, there should be an amelioration done for the design of toxin.</p> | <p class="content">In nature, spiders inject venom into the haemolymph of insects’ that causes the death of the prey. However, Pantide is designed to be ingested by pests after application of Pantide onto the leaves. Therefore, there should be an amelioration done for the design of toxin.</p> | ||
− | <p class="quote">“Many insecticidal venom peptides are typically ineffective, or at least much less potent, when delivered orally and this is thought to be due to the ineffective delivery of the toxins to their active sites of action in the central nervous system or peripheral nervous system.”</p> | + | <p class="quote" style="color:#FFAF60 !important;">“Many insecticidal venom peptides are typically ineffective, or at least much less potent, when delivered orally and this is thought to be due to the ineffective delivery of the toxins to their active sites of action in the central nervous system or peripheral nervous system.”</p> |
− | <p class="quote" style="text-align:right">Doctor Elaine C. Fitches et al<br> | + | <p class="quote" style="text-align:right;color:#FFAF60 !important;">Doctor Elaine C. Fitches et al<br> |
The Food and Environment Research Agency<br> | The Food and Environment Research Agency<br> | ||
United Kingdom | United Kingdom | ||
</p> | </p> | ||
− | <p class="content">To promote the toxicity of toxin peptide, we designed a fusion protein with the addition of lectin. Lectins are glycoprotein-binding proteins. In this case, we choose snowdrop (Galanthus nivalis) lectin as a carrier of toxin peptides to create a fusion protein.<sup>[ | + | <p class="content">To promote the toxicity of toxin peptide, we designed a fusion protein with the addition of lectin. Lectins are glycoprotein-binding proteins. In this case, we choose snowdrop (Galanthus nivalis) lectin as a carrier of toxin peptides to create a fusion protein.<sup>[6]</sup> Snowdrop Lectin recognizes the glycoproteins on the epithelial cell in the insect gut and facilitates the fusion protein to cross the epithelial cell by transcytosis. Therefore, the fusion proteins are translocated into the haemolymph from the alimentary canal. Also, snowdrop lectin is proved to be resistant to proteolytic activity in the insect gut.<sup>[7]</sup></p> |
</div> | </div> | ||
Line 539: | Line 539: | ||
<p class="content">In contrast to chemical pesticide, Pantide will not pollute rivers and soil in the environment, which is eco-friendly. Besides, due to structural difference of ion channels between insects and mammals, Pantide is non-toxic to mammals. The traditional pesticide will kill all the insects in the farmland no matter it is pest or not. The issue mentioned above is an urgent problem, here’s an example. Imidacloprid, a chemical insecticide with relatively low toxicity to human, cannot avoid causing CCD (Colony Collapsed Disorder) that impair the major pollinators, bees. To tackle this problem, Pantide is species specific to several orders of pests, Hv1a targets Lepidopteran, Orthopteran, and Dipteran, Sf1a targets Lepidopteran, and Dipteran, OAIP targets Lepidopteran and Coleopteran. Another apprehension about nowadays insecticidal pesticide is that through bioaccumulation, the pesticide chemical residue will accumulate in the human body, and can’t be degraded by us. However, Pantide is made of amino acids so it will degrade over time by the protease in the environment.</p> | <p class="content">In contrast to chemical pesticide, Pantide will not pollute rivers and soil in the environment, which is eco-friendly. Besides, due to structural difference of ion channels between insects and mammals, Pantide is non-toxic to mammals. The traditional pesticide will kill all the insects in the farmland no matter it is pest or not. The issue mentioned above is an urgent problem, here’s an example. Imidacloprid, a chemical insecticide with relatively low toxicity to human, cannot avoid causing CCD (Colony Collapsed Disorder) that impair the major pollinators, bees. To tackle this problem, Pantide is species specific to several orders of pests, Hv1a targets Lepidopteran, Orthopteran, and Dipteran, Sf1a targets Lepidopteran, and Dipteran, OAIP targets Lepidopteran and Coleopteran. Another apprehension about nowadays insecticidal pesticide is that through bioaccumulation, the pesticide chemical residue will accumulate in the human body, and can’t be degraded by us. However, Pantide is made of amino acids so it will degrade over time by the protease in the environment.</p> | ||
<p class="content">In comparison with another biological pesticide, Bacillus thuringiensis, Pantide comprises three different peptides, Hv1a, OAIP, and Sf1a that target calcium and sodium ion channels respectively. By using these three peptides alternately, the pest is hard to have resistance. Furthermore, ion channel has a low frequency of evolution. These features ensure Pantide can fight against pest for a long time without resistance. </p> | <p class="content">In comparison with another biological pesticide, Bacillus thuringiensis, Pantide comprises three different peptides, Hv1a, OAIP, and Sf1a that target calcium and sodium ion channels respectively. By using these three peptides alternately, the pest is hard to have resistance. Furthermore, ion channel has a low frequency of evolution. These features ensure Pantide can fight against pest for a long time without resistance. </p> | ||
+ | |||
<p class="content">References</p> | <p class="content">References</p> | ||
</div> | </div> |
Revision as of 19:21, 19 October 2016