Difference between revisions of "Team:ShanghaitechChina"

Line 151: Line 151:
 
                     <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" style="font-size:20px;">Team<span class="caret"></span></a>
 
                     <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" style="font-size:20px;">Team<span class="caret"></span></a>
 
                     <ul class="dropdown-menu" style="margin-left:0;">
 
                     <ul class="dropdown-menu" style="margin-left:0;">
                     <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Team" style="font-size:16px;">Members</a></li>
+
                     <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Team" style="font-size:20px;">Members</a></li>
                     <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Attributions" style="font-size:16px;">Attributions</a></li>
+
                     <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Attributions" style="font-size:20px;">Attributions</a></li>
 
                     </ul></li>
 
                     </ul></li>
 
                     <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" style="font-size:20px;  ">Project<span class="caret"></span></a>
 
                     <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" style="font-size:20px;  ">Project<span class="caret"></span></a>
 
                     <ul class="dropdown-menu" style="margin-left:0;">
 
                     <ul class="dropdown-menu" style="margin-left:0;">
                     <li><a href="https://2016.igem.org/Team:ShanghaitechChina/IBS" style="font-size:16px;">Integrative Biohydrogen System</a></li>
+
                     <li><a href="https://2016.igem.org/Team:ShanghaitechChina/IBS" style="font-size:20px;">Integrative Biohydrogen System</a></li>
                     <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Nanomaterials" style="font-size:14px;">Semiconductor Nanomaterials</a></li>
+
                     <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Nanomaterials" style="font-size:18px;">Semiconductor Nanomaterials</a></li>
                     <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Biofilm" style="font-size:14px;">Engineered Biofilms</a></li>
+
                     <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Biofilm" style="font-size:18px;">Engineered Biofilms</a></li>
                     <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Hydrogen" style="font-size:14px;">Hydrogenase Gene Clusters</a></li>
+
                     <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Hydrogen" style="font-size:18px;">Hydrogenase Gene Clusters</a></li>
 
                     </ul></li>
 
                     </ul></li>
 
    <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Parts" style="font-size:20px;  ">Parts</a></li>
 
    <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Parts" style="font-size:20px;  ">Parts</a></li>
Line 166: Line 166:
 
    <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Human_Practice" style="font-size:20px;  ">Human Practice</a></li>
 
    <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Human_Practice" style="font-size:20px;  ">Human Practice</a></li>
 
    <li><a href="https://2016.igem.org/Team:ShanghaitechChina/InterLab" style="font-size:20px;  ">InterLab</a></li>
 
    <li><a href="https://2016.igem.org/Team:ShanghaitechChina/InterLab" style="font-size:20px;  ">InterLab</a></li>
 +
<li><a href="https://2016.igem.org/Team:ShanghaitechChina/Safety" style="font-size:20px;  ">Safety</a></li>
 
<li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" style="font-size:20px;  ">Special Prize<span class="caret"></span></a><ul class="dropdown-menu" style="margin-left:0;"><li><a href="https://2016.igem.org/Team:ShanghaitechChina/Integrated_Practices" style="font-size:20px;  ">Integrated Human Practices</a></li>
 
<li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" style="font-size:20px;  ">Special Prize<span class="caret"></span></a><ul class="dropdown-menu" style="margin-left:0;"><li><a href="https://2016.igem.org/Team:ShanghaitechChina/Integrated_Practices" style="font-size:20px;  ">Integrated Human Practices</a></li>
 
<li><a href="https://2016.igem.org/Team:ShanghaitechChina/Engagement" style="font-size:20px;  "> Education and Public Engagement</a></li>
 
<li><a href="https://2016.igem.org/Team:ShanghaitechChina/Engagement" style="font-size:20px;  "> Education and Public Engagement</a></li>
Line 192: Line 193:
 
<div class="row">
 
<div class="row">
 
<div class="col-lg-5">
 
<div class="col-lg-5">
<img class="imground" src="https://static.igem.org/mediawiki/2016/5/5d/Plan_1_V2.jpg">
+
<a href="https://2016.igem.org/Team:ShanghaitechChina/IBS"><img class="imground" src="https://static.igem.org/mediawiki/2016/5/5d/Plan_1_V2.jpg"></a>
 
</div>
 
</div>
 
<div class="col-lg-7">
 
<div class="col-lg-7">
The sun-powered biofilm-interfaced artificial hydrogen-producing system harnesses the energy from sun light. Biofilm-anchored nanorods (NRs) can efficiently convert photons to electrons, which seamlessly tap into the electron chain of engineered strain carrying FeFe hydrogenase gene cluster, thereby achieving high-efficiency hydrogen production. Furthermore, immobilized on biofilms, NRs wouldn't cause damage and pressure to host and surrounding cells typically associated with traditional bacterial-based artificial photosynthesis system. In addition, the intrinsic adherence of biofilms towards various interfaces allows us to grow biofilms on easy-separation micro-beads, therefore facilitating recyclable usage of the biofilm-anchored NRs and endowing this whole system with recyclability.
+
We proposed and demonstrated a sun-powered biofilm-interfaced artificial hydrogen-producing system, Solar Hunter, that harnesses the energy from sun light. Biofilm-anchored nanorods can efficiently convert photons to electrons, which seamlessly tap into the electron chain of engineered strain carrying FeFe hydrogenase gene cluster, thereby achieving high-efficiency hydrogen production. Furthermore, the intrinsic adherence of biofilms towards various interfaces allows us to grow biofilms on easy-separation micro-beads, therefore facilitating recyclable usage of the biofilm-anchored NRs and endowing this whole system with recyclability.
  
 
</div>
 
</div>
Line 201: Line 202:
 
<div class="row" style="margin-top:80px">
 
<div class="row" style="margin-top:80px">
 
<div class="col-lg-8">
 
<div class="col-lg-8">
Biofilms function as a platform to sustain the whole system in vitro. Biofilms-anchored nanorods can efficiently convert photons to electrons, which transfer to engineered strain producing FeFe hydrogenase gene cluster, thereby achieving high-efficiency in biohydrogen production. Biofilms can immobilize NRs firmly so that they prevent potential damage and pressure caused by free NRs, as is the case in traditional artificial photosynthesis system.  In addition, a brilliant traits, the intrinsic adherence of biofilms towards various interfaces, allows us to grow biofilms on easy-separation micro-beads. Based on those merits, biofilm stand out by facilitating recyclable usage of the biofilm-anchored NRs and endowing this whole system with recyclability.
+
Quantum dots (QDs) and nanorods (NRs), as semiconductor nanocrystals, are of fundamental and technical importance. Owing to their extraordinary optical properties and high quantum-yield efficiency, these nanoobjects are often geared towards many energy-relevant applications. In our IGEM project, we conceive to harness those nanoscale objects as solar energy harvester. When firmly anchored onto E. coli biofilms through coordination chemistry, they can be easily recycled together with scalable biofilm coatings when necessary, and meanwhile, still possess the capability to efficiently convert photons into electrons upon light exposure. The aquired electrons would then tap into the electron chains of engineered strain harboring hydrogenase gene cluster, thereby assisting the enzymes to fulfill hydrogen production.
 
</div>
 
</div>
 
<div class="col-lg-4">
 
<div class="col-lg-4">
<img class="imground" src="https://static.igem.org/mediawiki/2016/7/71/Biofilm_2.jpg">
+
<a href=""><img class="imground" src="https://static.igem.org/mediawiki/2016/6/6a/Nanomaterials_2.jpg"></a>
 
</div>
 
</div>
 
</div>
 
</div>
 
<div class="row" style="margin-top:80px">
 
<div class="row" style="margin-top:80px">
 
<div class="col-lg-4">
 
<div class="col-lg-4">
<img class="imground" src="https://static.igem.org/mediawiki/2016/5/5c/Hydrogenase_2.jpg">
+
<a href="https://2016.igem.org/Team:ShanghaitechChina/Biofilm"><img class="imground" src="https://static.igem.org/mediawiki/2016/7/71/Biofilm_2.jpg"></a>
 
</div>
 
</div>
 
<div class="col-lg-8">
 
<div class="col-lg-8">
In our sun-powered biofilm-interfaced hydrogen-producing system, hydrogenase harnessed in engineered E. coli are conceived to efficiently catalyze proton reduction upon receiving electrons originally donated by semiconductor nanomaterials. Electron transportation from semiconductors to hydrogenase could be bridged and facilitated by the use of mediators, methyl viologen. To achieve efficient enzymatic activities, we codon-optimized and constructed the whole hydrogenase gene clusters (from Clostridium Acetobutylicum) by leveraging the multi-expression Acembl System.  
+
Biofilms function as a platform to sustain the whole system in vitro. Biofilm-anchored nanorods can efficiently convert photons to electrons, which transfer to engineered strain producing FeFe hydrogenase gene cluster, thereby achieving high-efficiency in biohydrogen production. In addition, a brilliant traits, the intrinsic adherence of biofilms towards various interfaces, allows us to grow biofilms on easy-separation micro-beads. Based on those merits, biofilm stand out by facilitating recyclable usage of the biofilm-anchored NRs and endowing this whole system with recyclability.
 
</div>
 
</div>
  
 
</div>
 
</div>
 
<div class="row" style="margin-top:80px">
 
<div class="row" style="margin-top:80px">
 +
 
<div class="col-lg-8">
 
<div class="col-lg-8">
Quantum dots (QDs) and nanorods (NRs), as semiconductor nanocrystals, are of fundamental and technical importance. Owing to their extraordinary optical properties and high quantum-yield efficiency, these nanoobjects are often geared towards many energy-relevant applications. In our IGEM project, we conceive to harness those nanoscale objects as solar energy harvester. When firmly anchored onto E. coli biofilms through coordination chemistry, they can be easily recycled together with scalable biofilm coatings when necessary, and meanwhile, still possess the capability to efficiently convert photons into electrons upon light exposure. The aquired electrons would then tap into the electron chains of engineered strain harboring hydrogenase gene cluster, thereby assisting the enzymes to fulfill hydrogen production.
+
In our sun-powered biofilm-interfaced hydrogen-producing system, hydrogenase harnessed in engineered E. coli are conceived to efficiently catalyze proton reduction upon receiving electrons originally donated by semiconductor nanomaterials. Electron transportation from semiconductors to hydrogenase could be bridged and facilitated by the use of mediators, methyl viologen. To achieve efficient enzymatic activities, we codon-optimized and constructed the whole hydrogenase gene clusters (from Clostridium Acetobutylicum) by leveraging the multi-expression Acembl System.  
 
</div>
 
</div>
 
<div class="col-lg-4">
 
<div class="col-lg-4">
<img class="imground" src="https://static.igem.org/mediawiki/2016/6/6a/Nanomaterials_2.jpg">
+
<a href="https://2016.igem.org/Team:ShanghaitechChina/Hydrogen"><img class="imground" src="https://static.igem.org/mediawiki/2016/5/5c/Hydrogenase_2.jpg"></a>
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 21:31, 19 October 2016

ShanghaiTech University