Difference between revisions of "Team:ShanghaitechChina/IBS"

m
Line 18: Line 18:
 
<li>
 
<li>
 
<a href="#AResults" style="font-size:14px;">Results</a>
 
<a href="#AResults" style="font-size:14px;">Results</a>
 +
</li>
 +
<li>
 +
<a href="#Potential use for wider application">Potential use for wider application</a>
 
</li>
 
</li>
 
</ul>
 
</ul>
Line 103: Line 106:
  
 
</div>
 
</div>
 +
 +
<p id="Potential use for wider application"></p>
 +
<div  class="content" >
 +
  <div class="row">
 +
    <div class="col-lg-12" >
 +
        <h1 align="center"  >Potential use for wider applications</h1>
 +
<b> Our biofilm system included a SpyCatcher system which has the potential for working directly with enzymes on biofilm. This design was not utilized in our hydrogen production so far, but it offers a gate for enzymes to directly react with nanomaterials since the CsgA subunit is engineered with both the Histag and SpyCatcher. This potential use might lead to a boost in efficiency in some nanomaterial-enzymes combinations. The reasoning of the design, and the proof of the functional design is shown below.  </b><p></p>
 +
<div class="col-lg-12">
 +
              <h3 class="bg" >SpyTag and SpyCatcher [2]</h3>
 +
<h4><b>Introduction and Motivation: SpySystem</b></h4>
 +
We want to attach enzymes to biofilm, so we turn to a widely applied linkage system, SpyTag and SpyCatcher.<p></p>
 +
<center>
 +
<img src="https://static.igem.org/mediawiki/parts/c/c5/Shanghaitechchina_spy1.png" style="width:50%;">
 +
</center>
 +
<h4><b> Design</b></h4>
 +
Appending SpyTag to CsgA subunit is a traditional and hackneyed approach to modify biofilm posttranscriptionally. Here, we challenge to attach larger part, SpyCatcher, to CsgA to enrich the versatility of biofilm platform. For one thing, we intend to pioneer new approach. For another aspect is that we concern SpyCatcher is too large that might jeopardize the biological activity and function of the enzyme. After comprehensive consideration, we decide to append SpyTag and SpyCatcher respectively to CsgA subunits and enzyme, and successfully prove their feasibility and stability.<p></p>
 +
<center>
 +
<img src="https://static.igem.org/mediawiki/parts/0/07/Shanghaitechchina_spy2.png" style="width:50%;">
 +
</center>
 +
      </div>
 +
<div>
 +
 +
<h4><b>Characterization</b></h4>
 +
As Figure3 illustrated, His-CsgA-SpyCatcher-Histag mutant incubated with mCherry-SpyTag show a clear biofilm-associated mcherry fluorescence signal, which indicating the accurate conformation and function of the SpyTag and SpyCatcher linkage system. The third figure is merged by the first and second figures of each sample are snapped respectively under green laser field with 558 nm wavelength and bright field of fluorescence microscopy, Zeiss Axio Imager Z2. As for controls, strains secreted CsgA–Histag and ΔCsgA both are unable to specifically attach to SpyTag thus no distinct localization highlight of red fluorescence on <i>E. coli</i>. That to a large extent prove the specificity of our desired linkage between SpyTag and SpyCatcher system. <p></p>
 +
<center>
 +
<img src="https://static.igem.org/mediawiki/parts/5/5c/Shanghaitechchina_mcherry-SpyTag%2BCsgA-SpyCatcher.png" style="width:100%;">
 +
</center>
 +
<p style="text-align:center"><b>Fig 3. </b> The first figures of each sample are snapped under green laser of 558 nm wavelength and mCherry-SpyTags emit red fluorescence. The second figures of each sample are snapped under bright field of fluorescence microscopy and we can clearly see a group of bacteria.. The third figures are merged by the first and second ones. All photos are taken by Zeiss Axio Imager Z2.</p>
 +
</div>
 +
 +
</div></div></div>
 +
 +
 
<p id="Reference"></p>
 
<p id="Reference"></p>
 
<div class="content">
 
<div class="content">

Revision as of 00:28, 20 October 2016

igem2016:ShanghaiTech