Difference between revisions of "Team:British Columbia"

m
 
(96 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{British_Columbia_1}}
+
{{British_Columbia_2}}
 +
{{British_Columbia_Navbar}}
 
<html lang="en">
 
<html lang="en">
 
<head>
 
<head>
 
   <title>Home</title>
 
   <title>Home</title>
 
+
  <meta charset="utf-8">
 +
  <meta name="viewport" content="width=device-width, initial-scale=1">
  
 
<style>
 
<style>
#solid-bg {
+
.cover{
   position: absolute;
+
   background: url("https://static.igem.org/mediawiki/2016/9/98/T--British_Columbia--header-front.JPG");
  top: 18px;
+
   background-size: cover; background-repeat: no-repeat;
   left: 0px;
+
  width: 100%;
+
  height: 150%;
+
  background-color: #30E3CA
+
 
}
 
}
  
#wrapper{
+
@media screen and (min-width: 768px) {
   position: absolute;
+
   .cover{
  height: 100vh; width: 180vh;
+
    background: linear-gradient(to bottom, rgba(0, 0, 0, 0.35) 0%, rgba(0, 0, 0, 0.15) 25%, rgba(0, 0, 0, 0) 100%), url("https://static.igem.org/mediawiki/2016/9/98/T--British_Columbia--header-front.JPG");
+
    background-size: cover; background-repeat: no-repeat;
  margin-left: 25px; margin-right: 25px;
+
    background-position: 0 0, 0 -220px;
  background-color: #30E3CA
+
  }
 
}
 
}
  
#cover{
+
#logo{
   height: 100%; width: 100%;
+
   position: relative;
 +
  top: 60px;  
 
}
 
}
  
#ubc_igem_2016 {
+
#logo img{
 
   position: absolute;
 
   position: absolute;
   top: 60%;  
+
   height: 150px; width: auto;
  width: 100%;
+
   right: 40px;
   color: #E4F9F5;
+
 
}
 
}
  
#down-button{
+
.row{
   position: absolute;
+
   max-width: 100%;  
  text-align: center;  
+
   margin: 0;  
   width: 100%;
+
 
}
 
}
  
#down-button.row:before{
+
.content-wrap{
   display: none;
+
   padding: 0;
 +
  margin-top: -14px;
 +
  background-color: #fff9cc;
 
}
 
}
  
#words{
+
video{
  position: absolute;
+
   display: table;
   display: block;
+
   margin: 0 auto;
  background-color: #40514E;
+
  color: #E4F9F5;
+
   padding: 15px;
+
 
}
 
}
  
.tab-content {
+
#description{
   padding-top: 10px;
+
   max-width: 100%;
 +
  color: #006837;
 
}
 
}
  
/* tab color */
+
#top-row{
.nav-tabs>li>a {
+
   margin-bottom: 15px;
   background-color: #40514E;
+
  border-color: #E4F9F5;
+
  color:#fff;
+
 
}
 
}
  
/* active tab color */
+
#top-row img{
.nav-tabs>li.active>a, .nav-tabs>li.active>a:hover, .nav-tabs>li.active>a:focus {
+
   max-width: 30%; height: auto;  
   color: #fff;
+
  background-color: #888888;
+
  border-color: #E4F9F5;
+
 
}
 
}
  
/* hover tab color */
+
#middle-row img{
.nav-tabs>li>a:hover {
+
  display: table;
   background-color: #494949;
+
  margin: 0 auto; margin-bottom: 25px;
 +
   max-width: 33%;
 
}
 
}
  
ul.nav.nav-tabs {
+
#sponsors img{
   text-align: right;
+
   display: table;
 +
  margin: 0 auto;
 +
  max-height: 150px; width: auto;
 
}
 
}
  
.nav-tabs>li {
+
  </style>
  float: none;
+
</head>
  display: inline-block;
+
}
+
  
#project-description-2 {
+
<header>
  height: 605px; width: 458px;
+
</header>
}
+
  
</style>
+
<body>
<script>
+
<div class="cover">  
$(document).ready(function() {
+
$("#down-button").click(function(){
+
    $('html,body').animate({
+
        scrollTop: $("#words").offset().top - 50
+
      },
+
      'slow');
+
  })
+
});
+
</script>
+
  
 +
<div id="logo">
 +
<img src="https://static.igem.org/mediawiki/2016/c/cf/T--British_Columbia--Logo.PNG">
 +
</div>
  
</head>
+
</div><!--.cover-->
<body>
+
<div id="solid-bg"></div>
+
<div id="wrapper">
+
    <div id="cover">
+
    <div id="ubc_igem_2016" class="container-fluid">
+
      <div class="row">
+
        <div class="col-sm-12">
+
          <h1>UBC <br> iGEM <br> 2016 </h1>
+
        </div>
+
      </div>
+
      <div class="row" id="down-button">
+
        <div class="col-sm-12">
+
          <a href="#words">
+
            <span class="glyphicon glyphicon-chevron-down"></span>
+
          </a>
+
        </div>
+
      </div>
+
    </div><!--#ubc_igem_2016-->
+
    </div><!--#cover-->
+
<div id="words">
+
  <ul class="nav nav-tabs">
+
    <h2 style="text-align: left">Project Description</h2>
+
    <li class="active"><a data-toggle="tab" href="#project-description-1">Default</a></li>
+
    <li><a data-toggle="tab" href="#project-description-2">Simple</a></li>
+
  </ul>
+
  <div class="tab-content">
+
    <div id="project-description-1" class="tab-pane fade in active">
+
    <p>Petroleum-derived chemicals are used as building blocks to create a variety of products we take for granted in our day to day lives. And while these molecules have proven to be critical for modern society, their overuse has had significant negative
+
      environmental and societal impacts. Microbial biocatalysts play a prominent role in the future of renewable biomass degradation into bio-equivalent chemicals that can be used directly in established industrial processes. However, there is high cost
+
      to process raw biomass into a usable form which has remained a major obstacle in successfully implementing these techniques in industry.</p>
+
  
    <p>During our brainstorming process we came up with the initial idea of using an engineered microbial community to effectively transform biomass into useful products. We were inspired by new research at our university on the expression of functional
+
<div class="content-wrap">
      enzymes onto the S-Layer of certain strains of bacteria. We aim to use these new techniques together with traditional bacterial bio-catalytic pathways to make the processing and utilization of renewable biomass feedstocks cheaper and more efficient.
+
<div id="description">
      </p>
+
<div class="row" id="top-row">
 +
<div class="col-sm-12" style="padding-left: 0">
 +
<h2 style="padding-left: 15px; margin-bottom: 10px"><strong>Harnessing microbial teamwork to degrade and valorize biomass</strong></h2>
 +
<img src="https://static.igem.org/mediawiki/2016/f/fc/T--British_Columbia--front_1.PNG" style="float: left" class="img-responsive">
 +
<p>Development of modern biorefining processes is required to reduce our reliance on petroleum-derived chemicals and fuels. One solution has been to use microbial catalysts to transform renewable biomass into bio-equivalent chemicals. However, a major obstacle to implementing inductrial-scale bioprocesses is the high cost of processing raw biomass into a usable form.</p>
 +
<p style="padding-right: 15px">Plant biomass, called lignocellulose, is an abundant and extremely strong polymer that has evolved to resist degradation. Inefficiencies with product yield are inevitably incurred as a consequence of the metabolic strain experienced by single microbial strains that comprise most modern bioprocessing systems. </p>
 +
<p>This year, our team aimed to make the processing and utilization of renewable biomass feedstocks cheaper and more efficient by building a microbial community able to transform biomass into useful products.</p>
 +
</div>
 +
</div><!--#top-row-->
  
    <p>To accomplish this task, we are designing a two-part microbial community. One half will be responsible for transforming biomass feeds stalks such as lignin and cellulose into useful growth substrates. While the other half will focus on using these
+
<div id="hp-video">
      growth substrates for the production of useful products. </p>
+
<video style="max-width: 100%; height: auto" controls>
 +
  <source src="https://static.igem.org/mediawiki/2016/4/4d/T--British_Columbia--hp-video.mp4" type="video/mp4">
 +
Your browser does not support the video tag.
 +
</video>
 +
</div>
  
    <p>To create our biomass transforming bacterium, we will use the robust surface expression system in the bacterium <i>Caulobacter crescentus</i> to display biomass transforming enzymes, mimicking the cellulosomes and laccases found in natural biomass
+
<div class="row" id="middle-row">
      degrading bacteria. To create our production bacterium, we will engineer <i>Escherichia coli</i>, to produce violacein. Violacein is a high-value natural product with interesting pharmacological properties. It also has the benefit of being easily
+
<div class="col-sm-12">
      detected and quantified, allowing for the validation of our approach. When combined, these bacterial strains will be able to work together to degrade and valorize biomass. </p>
+
<h1 style="text-align: center; margin-bottom: 25px"><big>Crescentium</big></h1>
 +
<img src="https://static.igem.org/mediawiki/2016/8/81/T--British_Columbia--front_3.PNG" class="img-responsive">
 +
<p style="text-align: center">A “divide and conquer” approach to split the tasks of biomass degradation and valorization between two microbial species, <i>Caulobacter crescentus</i> and <i>Escherichia coli</i>.</p>
 +
</div>
 +
</div><!--#middle-row-->
  
    <p>So far our team has been working to characterize a bio-bricked β-carotene construct in <i>E. coli</i> in order to do an initial proof of concept, we have also been working on the violacein construct. Simultaneously we have been cloning several laccases
+
<div class="row" id="bacterial-community">
      and celluloses into the s-layer protein of <i>C. crescentus</i>. We hope to get functional expression of our enzymes onto the s-layer and characterize the enzymatic activity to build and active model for our system which we can test by growing the
+
<div class="col-sm-12">
      two bacteria together in minimal media with restricted carbon sources. </p>
+
<h3><strong>The Bacterial Community</strong></h3>
  </div>
+
<img src="https://static.igem.org/mediawiki/2016/2/25/T--British_Columbia--front_4-2.PNG" class="img-responsive"
        <div id="project-description-2" class="tab-pane fade">
+
style="float: left; max-width: 66%"><figcaption><strong><i>Caulobacter crescentus:</i></strong> The subject of novel research at the University of British Columbia, the robust surface expression system in the bacterium <i>C. crescentus</i> can be engineered to display biomass-transforming enzymes.</figcaption>  
      <p>Using bacteria, we will make fuel from trees.</p>
+
<img src="https://static.igem.org/mediawiki/2016/0/09/T--British_Columbia--front_2-flipped.PNG" class="img-responsive"
    </div>
+
style="float: right; max-width: 33%; margin-bottom: 25px">
    </div><!--.tab-content-->
+
<figcaption><strong><i>Escherichia coli:</i></strong> A well-developed industrial workhorse, <i>E. coli</i> serves as a perfect host for many engineered biosynthetic pathways that transform glucose into valuable products.</figcaption>
   
+
</div>
</div><!--#words-->
+
</div><!--#bacterial-community-->
</div><!--#wrapper-->
+
</body>
+
  
 +
<div class="row" id="transformation-process">
 +
<div class="col-sm-12">
 +
<h3><strong>The Transformation Process</strong></h3>
 +
<p>When combined, we can harness the power of “microbial teamwork” to degrade and valorize biomass. <i>C. crescentus</i> surface-expressed cellulases cleave parts of lignocellulose to release glucose in to the system. <i>E. coli</i> consumes glucose and using engineered biosynthetic pathways, converts it into valuable chemicals.</p>
 +
<img src="https://static.igem.org/mediawiki/2016/3/3a/T--British_Columbia--front_5.PNG" class="img-responsive"
 +
style="max-width: 80%; display: table; margin: 0 auto"></div>
 +
</div><!--#transformation-process-->
 +
 +
</body>
 
</html>
 
</html>

Latest revision as of 03:47, 20 October 2016

Main CSS Navbar CSS

Home

Harnessing microbial teamwork to degrade and valorize biomass

Development of modern biorefining processes is required to reduce our reliance on petroleum-derived chemicals and fuels. One solution has been to use microbial catalysts to transform renewable biomass into bio-equivalent chemicals. However, a major obstacle to implementing inductrial-scale bioprocesses is the high cost of processing raw biomass into a usable form.

Plant biomass, called lignocellulose, is an abundant and extremely strong polymer that has evolved to resist degradation. Inefficiencies with product yield are inevitably incurred as a consequence of the metabolic strain experienced by single microbial strains that comprise most modern bioprocessing systems.

This year, our team aimed to make the processing and utilization of renewable biomass feedstocks cheaper and more efficient by building a microbial community able to transform biomass into useful products.

Crescentium

A “divide and conquer” approach to split the tasks of biomass degradation and valorization between two microbial species, Caulobacter crescentus and Escherichia coli.

The Bacterial Community

Caulobacter crescentus: The subject of novel research at the University of British Columbia, the robust surface expression system in the bacterium C. crescentus can be engineered to display biomass-transforming enzymes.
Escherichia coli: A well-developed industrial workhorse, E. coli serves as a perfect host for many engineered biosynthetic pathways that transform glucose into valuable products.

The Transformation Process

When combined, we can harness the power of “microbial teamwork” to degrade and valorize biomass. C. crescentus surface-expressed cellulases cleave parts of lignocellulose to release glucose in to the system. E. coli consumes glucose and using engineered biosynthetic pathways, converts it into valuable chemicals.