Difference between revisions of "Team:British Columbia"

 
(59 intermediate revisions by 4 users not shown)
Line 15: Line 15:
 
@media screen and (min-width: 768px) {
 
@media screen and (min-width: 768px) {
 
   .cover{
 
   .cover{
     background: linear-gradient(to bottom, rgba(0, 0, 0, 0.25) 0%, rgba(0, 0, 0, 0.15) 25%, rgba(0, 0, 0, 0) 100%), url("https://static.igem.org/mediawiki/2016/9/98/T--British_Columbia--header-front.JPG");
+
     background: linear-gradient(to bottom, rgba(0, 0, 0, 0.35) 0%, rgba(0, 0, 0, 0.15) 25%, rgba(0, 0, 0, 0) 100%), url("https://static.igem.org/mediawiki/2016/9/98/T--British_Columbia--header-front.JPG");
 
     background-size: cover; background-repeat: no-repeat;
 
     background-size: cover; background-repeat: no-repeat;
 
     background-position: 0 0, 0 -220px;
 
     background-position: 0 0, 0 -220px;
Line 39: Line 39:
 
.content-wrap{
 
.content-wrap{
 
   padding: 0;
 
   padding: 0;
 +
  margin-top: -14px;
 +
  background-color: #fff9cc;
 +
}
 +
 +
video{
 +
  display: table;
 +
  margin: 0 auto;
 
}
 
}
  
 
#description{
 
#description{
  background-color: #fff9cc;
 
 
   max-width: 100%;
 
   max-width: 100%;
 
   color: #006837;
 
   color: #006837;
  margin-top: -14px;
 
 
}
 
}
  
Line 53: Line 58:
  
 
#top-row img{
 
#top-row img{
   max-width: 33%; height: auto;
+
   max-width: 30%; height: auto;  
 
}
 
}
  
 
#middle-row img{
 
#middle-row img{
 
   display: table;
 
   display: table;
   margin: 0 auto;
+
   margin: 0 auto; margin-bottom: 25px;
 
   max-width: 33%;
 
   max-width: 33%;
 
}
 
}
  
   </style>
+
#sponsors img{
 +
   display: table;
 +
  margin: 0 auto;
 +
  max-height: 150px; width: auto;
 +
}
  
 +
  </style>
 
</head>
 
</head>
 +
 
<header>
 
<header>
 
</header>
 
</header>
 +
 
<body>
 
<body>
 
<div class="cover">  
 
<div class="cover">  
 +
 
<div id="logo">
 
<div id="logo">
 
<img src="https://static.igem.org/mediawiki/2016/c/cf/T--British_Columbia--Logo.PNG">
 
<img src="https://static.igem.org/mediawiki/2016/c/cf/T--British_Columbia--Logo.PNG">
 
</div>
 
</div>
 +
 
</div><!--.cover-->
 
</div><!--.cover-->
  
 
<div class="content-wrap">
 
<div class="content-wrap">
 
<div id="description">
 
<div id="description">
 
 
<div class="row" id="top-row">
 
<div class="row" id="top-row">
<div class="col-sm-12">
+
<div class="col-sm-12" style="padding-left: 0">
<h2><strong>Using one of nature's strongest molecules for biosynthesis</strong></h2>
+
<h2 style="padding-left: 15px; margin-bottom: 10px"><strong>Harnessing microbial teamwork to degrade and valorize biomass</strong></h2>
<p>Lignocellulosic biomass is nature's greatest raw reserve of carbon for biosynthesis.</p>
+
<img src="https://static.igem.org/mediawiki/2016/f/fc/T--British_Columbia--front_1.PNG" style="float: left" class="img-responsive">
<img src="https://static.igem.org/mediawiki/2016/f/fc/T--British_Columbia--front_1.PNG" style="float: left; left: -5px" class="img-responsive">
+
<p>Development of modern biorefining processes is required to reduce our reliance on petroleum-derived chemicals and fuels. One solution has been to use microbial catalysts to transform renewable biomass into bio-equivalent chemicals. However, a major obstacle to implementing inductrial-scale bioprocesses is the high cost of processing raw biomass into a usable form.</p>
<p>Serving as the structural support for plant cell walls, lignocellulose is an extremely strong polymer, evolved to resist degradation.</p>
+
<p style="padding-right: 15px">Plant biomass, called lignocellulose, is an abundant and extremely strong polymer that has evolved to resist degradation. Inefficiencies with product yield are inevitably incurred as a consequence of the metabolic strain experienced by single microbial strains that comprise most modern bioprocessing systems. </p>
<p>Sugars locked in the lignocellulose polymer could be used in new and existing biosynthesis pathways to create useful chemicals,materials and biofuels.</p>
+
<p>This year, our team aimed to make the processing and utilization of renewable biomass feedstocks cheaper and more efficient by building a microbial community able to transform biomass into useful products.</p>
<img src="https://static.igem.org/mediawiki/2016/c/cb/T--British_Columbia--front_2.PNG" style="float: right" class="img-responsive">
+
 
</div>
 
</div>
 
</div><!--#top-row-->
 
</div><!--#top-row-->
 +
 +
<div id="hp-video">
 +
<video style="max-width: 100%; height: auto" controls>
 +
  <source src="https://static.igem.org/mediawiki/2016/4/4d/T--British_Columbia--hp-video.mp4" type="video/mp4">
 +
Your browser does not support the video tag.
 +
</video>
 +
</div>
  
 
<div class="row" id="middle-row">
 
<div class="row" id="middle-row">
 
<div class="col-sm-12">
 
<div class="col-sm-12">
<h1 style="text-align: center"><big>Crescentium</big></h1>
+
<h1 style="text-align: center; margin-bottom: 25px"><big>Crescentium</big></h1>
 
<img src="https://static.igem.org/mediawiki/2016/8/81/T--British_Columbia--front_3.PNG" class="img-responsive">
 
<img src="https://static.igem.org/mediawiki/2016/8/81/T--British_Columbia--front_3.PNG" class="img-responsive">
<p style="text-align: center">A flexible closed system bacterial community for the direct conversion of lignocellulosic biomass into valued biosynthetic chemicals.</p>
+
<p style="text-align: center">A “divide and conquer” approach to split the tasks of biomass degradation and valorization between two microbial species, <i>Caulobacter crescentus</i> and <i>Escherichia coli</i>.</p>
 
</div>
 
</div>
<div><!--#middle-row-->
+
</div><!--#middle-row-->
  
 
<div class="row" id="bacterial-community">
 
<div class="row" id="bacterial-community">
Line 100: Line 119:
 
<h3><strong>The Bacterial Community</strong></h3>
 
<h3><strong>The Bacterial Community</strong></h3>
 
<img src="https://static.igem.org/mediawiki/2016/2/25/T--British_Columbia--front_4-2.PNG" class="img-responsive"  
 
<img src="https://static.igem.org/mediawiki/2016/2/25/T--British_Columbia--front_4-2.PNG" class="img-responsive"  
style="float: left; max-width: 66%"><figcaption><strong>Caulobacter crescentus:</strong> The subject of novel research at the University of British Columbia. <i>C. crescentus</i> can be engineered to express functional enzymes fused upon its S-Layer.</figcaption>  
+
style="float: left; max-width: 66%"><figcaption><strong><i>Caulobacter crescentus:</i></strong> The subject of novel research at the University of British Columbia, the robust surface expression system in the bacterium <i>C. crescentus</i> can be engineered to display biomass-transforming enzymes.</figcaption>  
 
<img src="https://static.igem.org/mediawiki/2016/0/09/T--British_Columbia--front_2-flipped.PNG" class="img-responsive"  
 
<img src="https://static.igem.org/mediawiki/2016/0/09/T--British_Columbia--front_2-flipped.PNG" class="img-responsive"  
style="float: right; max-width: 33%">
+
style="float: right; max-width: 33%; margin-bottom: 25px">
<figcaption><strong>Escherichia:</strong> Easily manipulated and cultivated in the lab, <i>E. coli</i> serves as a perfect host for many biosynthetic pathways that transform glucose.</figcaption>
+
<figcaption><strong><i>Escherichia coli:</i></strong> A well-developed industrial workhorse, <i>E. coli</i> serves as a perfect host for many engineered biosynthetic pathways that transform glucose into valuable products.</figcaption>
 
</div>
 
</div>
<div><!--#bacterial-community-->
+
</div><!--#bacterial-community-->
  
 
<div class="row" id="transformation-process">
 
<div class="row" id="transformation-process">
 
<div class="col-sm-12">
 
<div class="col-sm-12">
 
<h3><strong>The Transformation Process</strong></h3>
 
<h3><strong>The Transformation Process</strong></h3>
<p><i>C. crecentus</i> cleaves parts of the lignocellulose molecule, releasing glucose in to the system.</p>
+
<p>When combined, we can harness the power of “microbial teamwork” to degrade and valorize biomass. <i>C. crescentus</i> surface-expressed cellulases cleave parts of lignocellulose to release glucose in to the system. <i>E. coli</i> consumes glucose and using engineered biosynthetic pathways, converts it into valuable chemicals.</p>
<p><i>E. coli</i> takes in the glucose and, through biosynthetic pathways, converts it into valued chemicals.</p>
+
 
<img src="https://static.igem.org/mediawiki/2016/3/3a/T--British_Columbia--front_5.PNG" class="img-responsive"  
 
<img src="https://static.igem.org/mediawiki/2016/3/3a/T--British_Columbia--front_5.PNG" class="img-responsive"  
style="max-width: 80%"></div>
+
style="max-width: 80%; display: table; margin: 0 auto"></div>
<div><!--#transformation-process-->
+
</div><!--#transformation-process-->
 
+
</div><!--#description-->
+
  
</div><!--.content-wrap-->
 
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 03:47, 20 October 2016

Main CSS Navbar CSS

Home

Harnessing microbial teamwork to degrade and valorize biomass

Development of modern biorefining processes is required to reduce our reliance on petroleum-derived chemicals and fuels. One solution has been to use microbial catalysts to transform renewable biomass into bio-equivalent chemicals. However, a major obstacle to implementing inductrial-scale bioprocesses is the high cost of processing raw biomass into a usable form.

Plant biomass, called lignocellulose, is an abundant and extremely strong polymer that has evolved to resist degradation. Inefficiencies with product yield are inevitably incurred as a consequence of the metabolic strain experienced by single microbial strains that comprise most modern bioprocessing systems.

This year, our team aimed to make the processing and utilization of renewable biomass feedstocks cheaper and more efficient by building a microbial community able to transform biomass into useful products.

Crescentium

A “divide and conquer” approach to split the tasks of biomass degradation and valorization between two microbial species, Caulobacter crescentus and Escherichia coli.

The Bacterial Community

Caulobacter crescentus: The subject of novel research at the University of British Columbia, the robust surface expression system in the bacterium C. crescentus can be engineered to display biomass-transforming enzymes.
Escherichia coli: A well-developed industrial workhorse, E. coli serves as a perfect host for many engineered biosynthetic pathways that transform glucose into valuable products.

The Transformation Process

When combined, we can harness the power of “microbial teamwork” to degrade and valorize biomass. C. crescentus surface-expressed cellulases cleave parts of lignocellulose to release glucose in to the system. E. coli consumes glucose and using engineered biosynthetic pathways, converts it into valuable chemicals.