Difference between revisions of "Team:ShanghaitechChina"

 
(290 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{ShanghaitechChina}}
 
 
<html>
 
<html>
    <style>
+
<style>
#content{background-image:rgba(69,137,148,0);}
+
html{
#side-menu {
+
height:100%;
    background: rgba(150, 150, 126, 0.5) none repeat scroll 0 0;
+
margin:0;
    color: white;
+
padding:0;
    padding: 0;
+
width:100%;
    position:fixed;
+
background-color:#242424;
    right:2%;
+
    top:15%;
+
    width:150px;
+
    transition: all 0.3s ease 0s;
+
    border: 1px solid #cccccc;
+
    border-radius: 10px;
+
    box-shadow: 1px 1px 3px rgba(0, 0, 0, 0.35);
+
    color: #3d3d3d;
+
    font-family: Tahoma;
+
    font-size: 12px;
+
 
}
 
}
#side-menu:hover {
+
body{
    background: rgba(0, 0, 0, 0.7) none repeat scroll 0 0;
+
width:100%;
    padding: 0 0 30;
+
margin:0 auto;
 +
padding:0;
 +
        background:url("https://static.igem.org/mediawiki/2016/1/12/Bubbles_back.png"),url("https://static.igem.org/mediawiki/2016/2/23/Bubbles3.png"),url("https://static.igem.org/mediawiki/2016/e/e1/Back3.png") repeat fixed;
 +
        font-size:100%;
 +
       
 
}
 
}
#side-menu ul {
+
body,td,th {
    list-style-type:none;
+
font-family: Arial, Helvetica, sans-serif,Britannic;
    margin: 0 0 40px;
+
 
}
 
}
#side-menu  ul li ul {
+
 
    padding: 0;
+
#top_title, #sideMenu{
 +
        display: none;
 +
      }
 +
 
 +
html, body, div, span, p, a, del, em, img, ol, ul, li, fieldset, form, label {
 +
margin: 0;
 +
padding: 0;
 +
border: 0;
 +
font-size: 100%;
 +
font: inherit;
 +
vertical-align: baseline;
 
}
 
}
#side-menu ul  li  ul  li {
+
 
    list-style-type:none;
+
article, aside, details, figcaption, figure,
    line-height: 60px;
+
footer, header, hgroup, menu, nav, section {
    padding-left: 0;
+
display: block;
    margin-left:-30px;
+
 
}
 
}
#side-menu  ul  li  ul  li:hover {
+
 
    background: rgba(255, 255, 255, 0.1) none repeat scroll 0 0;
+
html, body {
    cursor: pointer;
+
line-height: 1;
 +
min-height:100%; font-size:18px;
 +
/*font-family: 'Droid Sans', sans-serif;*/
 +
 
 
}
 
}
#side-menu  ul  li  ul  li a{
 
    color:white; !important
 
    text-decoration:none; !important
 
  
 +
 +
 +
html, body {
 +
width:100%;
 +
height:100%;
 +
padding:0;
 +
margin:0;
 +
overflow-x:hidden;
 +
       
 +
}
 +
.skrollable {
 +
/*
 +
* First-level skrollables are positioned relative to window
 +
*/
 +
position:fixed;
 +
 +
/*
 +
* Skrollables by default have a z-index of 100 in order to make it easy to position elements in front/back without changing each skrollable
 +
*/
 +
z-index:100;
 +
}
 +
 +
.skrollr-mobile .skrollable {
 +
/*
 +
May cause issues on Android default browser (see #331 on GitHub).
 +
*/
 +
position:absolute;
 +
}
 +
 +
.skrollable .skrollable {
 +
/*
 +
* Second-level skrollables are positioned relative their parent skrollable
 +
*/
 +
position:absolute;
 +
}
 +
 +
.skrollable .skrollable .skrollable {
 +
/*
 +
* Third-level (and below) skrollables are positioned static
 +
*/
 +
position:static;
 +
}
 +
.content {
 +
    background-color: rgba(240,240,240,0.85);
 +
    width:100%;
 +
    font-size: 22px;
 +
    padding: 10px 30px;
 +
}
 +
.imground {
 +
    width:100%;
 +
    margin-left:2%;
 +
    border-radius: 10px 10px 10px 10px;
 +
}
 +
.introimg {
 +
    width:82%;
 +
    margin-left:9%;
 +
    border-radius: 10px 10px 10px 10px;
 +
}
 +
.videocontainer {
 +
width:100%;
 +
height:105%;
 +
margin-top:10%;
 +
color:white;
 +
}
 +
.content2 {
 +
    background-color: rgba(255,255,255,0.85);
 +
    width:82%;
 +
    margin-left:9%;
 +
    border: 1px solid #cccccc;
 +
    border-radius: 10px;
 +
    box-shadow: 1px 1px 3px rgba(0, 0, 0, 0.35);
 +
    color: #3d3d3d;
 +
    font-size: 22px;
 +
    padding: 10px 10px 10px 10px;
 
}
 
}
 
</style>
 
</style>
 +
<head class="no-skrollr">
 +
<meta charset="utf-8">
 +
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=no">
 +
<title>ShanghaiTech University</title>
 +
    <script src="https://2016.igem.org/Template:ShanghaitechChina/js/skollr?action=raw&ctype=text/javascript"></script>
 +
    <link rel="stylesheet" href="https://2016.igem.org/Template:ShanghaitechChina/css/bootstrap?action=raw&ctype=text/css">
 +
    <script src="https://2016.igem.org/Template:ShanghaitechChina/js/jquery?action=raw&ctype=text/javascript"></script>
 +
    <script src="https://2016.igem.org/Template:ShanghaitechChina/js/bootstrap?action=raw&ctype=text/javascript"></script>
 
      
 
      
<body>
+
</head>
 
+
<body data-0="background-position:0px 0px;" data-10000="background-position:-1000px -20000px;">
<div class="intro-banner">
+
</div></div></div></div></div>
        <div class="container">
+
<nav class="navbar navbar-inverse navbar-fixed-top" style="margin-top:10px;text-align:center">
            <div class="row">
+
    <div class="container-fluid">
  
                <div class="col-lg-12">
+
        <!-- Logo -->
                    <div class="intro-inner">
+
        <div class="navbar-header">
                        <h1>Solar Hunter</h1>
+
            <button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#mainNavBar">
                        <h3>meixianghaoxieshenme</h3>
+
                <span class="icon-bar"></span>
                        <hr class="intro-divider">
+
                <span class="icon-bar"></span>
                        <ul class="list-inline intro-social-buttons">
+
            </button>
 
+
            <a href="https://2016.igem.org/Team:ShanghaitechChina" class="navbar-brand" style="font-size:28px;margin-top:2%">Solar Hunter</a>
                        </ul>
+
        </div>
                    </div>
+
                </div>
+
  
 +
        <!-- Menu Items -->
 +
        <div class="collapse navbar-collapse" id="mainNavBar">
 +
                <ul class="nav navbar-nav navbar-right">
 +
                    <li><a href="https://2016.igem.org/Team:ShanghaitechChina" style="font-size:20px;"> </a></li>
 +
                    <li><a href="https://2016.igem.org/Team:ShanghaitechChina" style="font-size:20px;">Home</a></li>
 +
                    <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" style="font-size:20px;">Team<span class="caret"></span></a>
 +
                    <ul class="dropdown-menu" style="margin-left:0;">
 +
                    <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Team" style="font-size:20px;">Members</a></li>
 +
                    <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Attributions" style="font-size:20px;">Attributions</a></li>
 +
                    </ul></li>
 +
                    <li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" style="font-size:20px;  ">Project<span class="caret"></span></a>
 +
                    <ul class="dropdown-menu" style="margin-left:0;">
 +
                    <li><a href="https://2016.igem.org/Team:ShanghaitechChina/IBS" style="font-size:20px;">Integrative Biohydrogen System</a></li>
 +
                    <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Nanomaterials" style="font-size:18px;">Semiconductor Nanomaterials</a></li>
 +
                    <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Biofilm" style="font-size:18px;">Engineered Biofilms</a></li>
 +
                    <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Hydrogen" style="font-size:18px;">Hydrogenase Gene Clusters</a></li>
 +
                    </ul></li>
 +
    <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Parts" style="font-size:20px;  ">Parts</a></li>
 +
    <!--<li><a href="https://2016.igem.org/Team:ShanghaitechChina/Safety" style="font-size:20px;  ">Safety</a></li>-->
 +
    <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Notebook" style="font-size:20px;  ">Notebook</a></li>
 +
    <li><a href="https://2016.igem.org/Team:ShanghaitechChina/Human_Practice" style="font-size:20px;  ">Human Practice</a></li>
 +
    <li><a href="https://2016.igem.org/Team:ShanghaitechChina/InterLab" style="font-size:20px;  ">InterLab</a></li>
 +
<li><a href="https://2016.igem.org/Team:ShanghaitechChina/Safety" style="font-size:20px;  ">Safety</a></li>
 +
<li class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" style="font-size:20px;  ">Special Prize<span class="caret"></span></a><ul class="dropdown-menu" style="margin-left:0;"><li><a href="https://2016.igem.org/Team:ShanghaitechChina/Integrated_Practices" style="font-size:20px;  ">Integrated Human Practices</a></li>
 +
<li><a href="https://2016.igem.org/Team:ShanghaitechChina/Engagement" style="font-size:20px;  "> Education and Public Engagement</a></li>
 +
<li><a href="https://2016.igem.org/Team:ShanghaitechChina/Measurement" style="font-size:20px;  ">Measurement</a></li>
 +
<li><a href="https://2016.igem.org/Team:ShanghaitechChina/Design" style="font-size:20px;  ">Applied Design</a></li>
 +
</ul></li>
 +
                </ul>
 
             </div>
 
             </div>
        </div>
 
    </div>
 
<div class="container-full">
 
<div id="side-menu">
 
<li><a href="#ct1">Part I</a></li>
 
<li>Part II</li>
 
</div>
 
<div class="content">
 
  <h1 align="center">Solar Hunter System</h1>
 
<a name="ct1">
 
<p>
 
  
The recent work based upon Bacterial (M. thermoacetica)-quantum dots hybrid system to harvest value-based products has suggested great future for artificial photosynthesis system [1].  Despite important advances, the current efficiency and scope of application have been limited due to the damage of quantum dots on biological systems arising from direct contact of quantum dots with cell membrane, less efficient integration between bio-abiotic interfaces as well as poor conductivity of most biological systems.  To address these issues, we develop a solar hunter platform that can seamlessly integrate conductive bacteria biofilms, high-efficiency photon-electron transformation of quantum dots with efficient metabolic pathways of biological systems.   
 
  
</p>
+
    </div>
</a>
+
</nav>
<p>
+
 
The biofilm system that came into our sight is type IV pili in Geobacter sulfurreducens, which is conductive microbial nanowire [2].  The wire can be expressed in genetically manipulated strains as long wires with binding sites for quantum dots and efficiently conduct electrons.  With the more surface area of biofilms for quantum dots and indirect contact between quantum dots with cell membrane, we expect a significant boost in the energy of light harvested by our Solar Hunter without sacrificing normal cell growth and regeneration.
+
<div id="skrollr-body">
</p>
+
<div data-0="opacity:1;top:3%;transform:rotate(0deg);transform-origin:0 0;" data-500="opacity:0;top:90%;transform:rotate(-90deg);">
<p>
+
  <img class="introimg" src="https://static.igem.org/mediawiki/2016/2/26/Intro-image.jpg">
Specifically, we propose three demo examples here based on our newly developed artificial photosynthesis. The first one is a simple artificial photosynthesis based on non-conductive biofilm; to increase system complexity and promote the efficiency of electrons transferring, we design the other two systems in which we use conductive biofilm of G. sulfurreducens to develop the electrons transferring tracks and connect the quantum dots with microorganisms.
+
</div>
</p>
+
<img class="introimg" src="https://static.igem.org/mediawiki/2016/7/71/T--ShanghaitechChina--member--bf--Home_Big_Picture.png" style="margin-top:45%;">
<p>
+
<!--https://static.igem.org/mediawiki/2016/5/5d/Plan_1_V2.jpg-->
1) At first, we want to establish the Solar Hunter system on E. Coli, whose biofilm serves as a synthetic nonconductive biological platform for self-assembling function materials.  The amyloid protein CsgA , which is the dominant component in E. Coli, can be programmed to append small peptide domain and successfully secreted with biological functions.  Then we propose that our Hunter family member can be an enzyme.  Nitrogenase complex is the central enzyme in the natural nitrogen-fixing process. Previous researches have demonstrated the viability of using semiconductor CdS nanorod to harvest light and supply the electrons as a substitute for the Fe protein in the complex where electrons are generated from ATP [3].  The heterotetrameric MoFe protein, the other part in nitrogenase complex, will use the electrons provided to reduce N2 to NH3.  We will explore the possibility of an increase in the efficiency of the semiconductor-enzyme system usingE.Coli’s biofilm, on which biofilm subunit are engineered with SpyTag and SpyCatcher system from FbaB protein to provide binding sites for proteins [4].
+
<div class="content2">
</p>
+
We conceived and proposed an integrative artificial photosynthesis platform, Solar Hunter, in which engineered strains, living biofilms and biofilms-interfaced semiconductor nanomaterials reside in harmony, carefully divide individuals' labor and synergistically work towards value-added products.  
<p>
+
2) The solar source in the solar-chemical system is, in its essence, energy with electrons.  In an attempt to apply our quantum dots-pili hybrid to a wider extent, we decide to try out this model on another amazing archaea, Methanosaeta harundinacea, which is likely to have a pathway to simply use carbon dioxide, electrons and protons for the biosynthesis of methane [5]. Geobacter can naturally express nanowires and transfer electrons between each other or do direct interspecies electron transfer(DIET) with other microorganisms; for our project, Methanosarcina. Extern light is absorbed by the Geobacter and is transferred into electrons. Semi-conductors are bind to the biofilm of Geobacter to enhance its conductivity.  The electrons are then transported to Methanosarcina in the form of succinate and fumarate, used as the input material to produce value-added products like methane.
+
</p>
+
<p>
+
3) In addition, solar hunters will include a pathway for leucine synthesis from acetate (acetyl-coenzyme A) [6], since leucine is of higher value.  They use carbon dioxide as a carbon source to synthesize isoleucine via a combination of two pathways.  The first pathway is the acetyl-coenzyme A (acetyl-CoA) pathway [7], gaining electrons to reduce carbon dioxide and synthesizing acetyl-CoA which is a vital intermediate.  As acetyl-CoA is synthesized, it can be the raw material of the second pathway, which is the pathway for isoleucine biosynthesis in G. sulfurreducens, to give the final product isoleucine [8].  There are three main reasons for us to choose this combination.  Firstly, these two pathways are found in G. sulfurreducens.  Secondly, carbon dioxide is a kind of environmentally friendly carbon source.  Thirdly, comparing to carbon dioxide, isoleucine is a high value-added chemical that will bring us a high level of economic efficiency.  Additionally, the second pathway can be replaced by other pathways to synthesize other value-added chemicals, such as butanol.
+
  
  
 +
</div>
 +
<div class="content" style="margin-top:5%">
 +
<div class="row"><center><h1><b>Integrative Biohydrogen System</b></h1></center>
 +
<div class="col-lg-5">
 +
<a href="https://2016.igem.org/Team:ShanghaitechChina/IBS"><img class="imground" src="https://static.igem.org/mediawiki/2016/c/c9/T--ShanghaitechChina--member--qlc--plan1_V5.jpg"></a>
 +
</div>
 +
<div class="col-lg-7" style="margin-top:20px" >
 +
We proposed and demonstrated a sun-powered biofilm-interfaced artificial hydrogen-producing system, Solar Hunter, that harnesses the energy from sun light. Biofilm-anchored nanorods can efficiently convert photons to electrons, which seamlessly tap into the electron chain of engineered strain carrying FeFe hydrogenase gene cluster, thereby achieving high-efficiency hydrogen production. Furthermore, the intrinsic adherence of biofilms towards various interfaces allows us to grow biofilms on easy-separation micro-beads, therefore facilitating recyclable usage of the biofilm-anchored NRs and endowing this whole system with recyclability.
  
</p>
+
</div>
 +
</div>
 +
<div class="row" style="margin-top:80px">
 +
<div class="col-lg-8" style="margin-top:20px">
 +
Nanomaterials are those nanoscale objects serving as solar energy harvester. When firmly anchored onto <i>E. coli</i> biofilms through coordination chemistry, they can be easily recycled together with scalable biofilm coatings and still possess the capability to efficiently convert photons into electrons upon light exposure. The acquired electrons would tap into the electron chains of engineered strain harboring hydrogenase gene cluster, thereby fulfilling hydrogen production.
 +
</div>
 +
<div class="col-lg-4">
 +
<a href="https://2016.igem.org/Team:ShanghaitechChina/Nanomaterials"><img class="imground" src="https://static.igem.org/mediawiki/2016/9/94/T--ShanghaitechChina--member--qlc--nanomaterials.jpg"></a>
 +
</div>
 +
</div>
 +
<div class="row" style="margin-top:80px">
 +
<div class="col-lg-4">
 +
<a href="https://2016.igem.org/Team:ShanghaitechChina/Biofilm"><img class="imground" src="https://static.igem.org/mediawiki/2016/a/a4/T--ShanghaitechChina--member--qlc--biofilm.jpg"></a>
 +
</div>
 +
<div class="col-lg-8" style="margin-top:20px">
 +
Biofilms function as a platform to sustain the whole system. Biofilms can immobilize NRs firmly so that they prevent potential damage and stresses caused by free NRs, as is the case in traditional artificial photosynthesis system.  In addition,  the intrinsic adherence of biofilms towards various interfaces, allows us to grow biofilms on easy-separation micro-beads. Based on those merits, biofilm stand out by facilitating recyclable usage of the biofilm-anchored NRs and endowing this whole system with recyclability.
 +
</div>
  
<p>
+
</div>
Collectively,  we envision that these three parallel systems should build a powerful solar Hunter system to push the boundary of current artificial photosynthesis.
+
<div class="row" style="margin-top:80px">
  
  </p>
+
<div class="col-lg-8" style="margin-top:20px">
  <h1 id="reference">
+
In our sun-powered biofilm-interfaced hydrogen-producing system, hydrogenase harnessed in engineered <i>E. coli</i> are conceived to efficiently catalyze proton reduction upon receiving electrons originally donated by semiconductor nanomaterials. Electron transportation from semiconductors to hydrogenase could be bridged and facilitated by the use of mediators, methyl viologen. To achieve efficient enzymatic activities, we codon-optimized and constructed the whole hydrogenase gene clusters (from <i>Clostridium acetobutylicum</i>) by leveraging the multi-expression Acembl System.  
  Reference
+
</div>
  </h1>
+
<div class="col-lg-4">
<p>
+
<a href="https://2016.igem.org/Team:ShanghaitechChina/Hydrogen"><img class="imground" src="https://static.igem.org/mediawiki/2016/7/76/T--ShanghaitechChina--member--qlc--hydrogenase.jpg"></a>
  [1] Sakimoto K K, Wong A B, Yang P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production.[J]. Science, 2016, 351(6268):74-77.
+
</div>
</p>
+
</div>
<p>
+
</div>
[2] Strycharz S M, Glaven R H, Coppi M V, et al. Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens[J]. Bioelectrochemistry, 2011, 80(2):142-150.
+
<div id="vi" class="videocontainer" style="position-left:0" data-200-bottom="background:rgba(0, 0, 0, 0.2);" data-top="background:rgba(0,0,0,1);" style="margin-top:0">
</p>
+
<video data-anchor-target="#vi" src="https://static.igem.org/mediawiki/2016/6/64/T--ShanghaitechChina--SolarHunter2.mp4" width="75%" style="margin-top:3%;margin-left:13%" controls="controls">
<p>
+
</video>
[3] Brown K A, Harris D F, Wilker M B, et al. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.[J]. Science, 2016, 352(6284):448-450.
+
<center>
</p>
+
<p></p>
<p>
+
ShanghaiTech University, No. 393, Huaxiazhong Rd., Zhangjiang High-tech Park, Pudong Area, Shanghai 201210, China. Correspondence
[4] Zakeri B, Fierer J O, Celik E, et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(12):690-7.</p>
+
<p></p>
<p>
+
E-mail: zhongchao@shanghaitech.edu.cn
[5] Rotaru A E, Shrestha P M, Liu F, et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Journal of Virology, 2013, 18(1):324-31.</p>
+
</center>
<p>
+
</div>
[6] Risso C, Van Dien S J A, Lovley D R. Elucidation of an Alternate Isoleucine Biosynthesis Pathway in Geobacter sulfurreducens[J]. Infection Control & Hospital Epidemiology, 2008, 190(7):277-81.</p>
+
</div>
<p>
+
[7] Methé B A, Nelson K E, Eisen J A, et al. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments.[J]. Science, 2003, 302(5652):1967-9.</p>
+
<p>
+
[8] Mahadevan R, Palsson B Ø, Lovley D R. In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling.[J]. Nature Reviews Microbiology, 2011, 9(1):39-50.</p>
+
</div>
+
  
</div>
 
</body>
 
  
  
 +
<script>
 +
var isMobile = function() {
 +
    var check = false;
 +
    (function(a){if(/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(a)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0,4)))check = true})(navigator.userAgent||navigator.vendor||window.opera);
 +
    return check;
 +
  };
  
 +
  if (!isMobile())
 +
  {
 +
    // Mediawiki escapes & to &amp;
 +
    var s = skrollr.init({
 +
//edgeStrategy: 'set',
 +
                forceHeight: false
 +
    });
 +
  }
  
 +
</script>
  
  
  
 +
</body>
  
  
 
</html>
 
</html>

Latest revision as of 07:23, 2 December 2016

ShanghaiTech University