Difference between revisions of "Team:ShanghaitechChina"

 
(34 intermediate revisions by 5 users not shown)
Line 13: Line 13:
 
padding:0;
 
padding:0;
 
         background:url("https://static.igem.org/mediawiki/2016/1/12/Bubbles_back.png"),url("https://static.igem.org/mediawiki/2016/2/23/Bubbles3.png"),url("https://static.igem.org/mediawiki/2016/e/e1/Back3.png") repeat fixed;
 
         background:url("https://static.igem.org/mediawiki/2016/1/12/Bubbles_back.png"),url("https://static.igem.org/mediawiki/2016/2/23/Bubbles3.png"),url("https://static.igem.org/mediawiki/2016/e/e1/Back3.png") repeat fixed;
 +
        font-size:100%;
 
          
 
          
 
}
 
}
 
body,td,th {
 
body,td,th {
font-family: Arial, Helvetica, sans-serif,;
+
font-family: Arial, Helvetica, sans-serif,Britannic;
 
}
 
}
  
Line 89: Line 90:
 
     background-color: rgba(240,240,240,0.85);
 
     background-color: rgba(240,240,240,0.85);
 
     width:100%;
 
     width:100%;
     font-size: 20px;  
+
     font-size: 22px;  
 
     padding: 10px 30px;
 
     padding: 10px 30px;
 
}
 
}
Line 104: Line 105:
 
.videocontainer {
 
.videocontainer {
 
width:100%;
 
width:100%;
height:100%;
+
height:105%;
margin-top:10%
+
margin-top:10%;
 +
color:white;
 
}
 
}
 
.content2 {
 
.content2 {
Line 115: Line 117:
 
     box-shadow: 1px 1px 3px rgba(0, 0, 0, 0.35);
 
     box-shadow: 1px 1px 3px rgba(0, 0, 0, 0.35);
 
     color: #3d3d3d;
 
     color: #3d3d3d;
     font-size: 18px;
+
     font-size: 22px;  
    margin-top:50px;
+
 
     padding: 10px 10px 10px 10px;
 
     padding: 10px 10px 10px 10px;
 
}
 
}
Line 141: Line 142:
 
                 <span class="icon-bar"></span>
 
                 <span class="icon-bar"></span>
 
             </button>
 
             </button>
             <a href="https://2016.igem.org/Team:ShanghaitechChina" class="navbar-brand" style="font-size:28px;margin-top:3%">Solar Hunter</a>
+
             <a href="https://2016.igem.org/Team:ShanghaitechChina" class="navbar-brand" style="font-size:28px;margin-top:2%">Solar Hunter</a>
 
         </div>
 
         </div>
  
Line 186: Line 187:
 
<!--https://static.igem.org/mediawiki/2016/5/5d/Plan_1_V2.jpg-->
 
<!--https://static.igem.org/mediawiki/2016/5/5d/Plan_1_V2.jpg-->
 
<div class="content2">
 
<div class="content2">
We conceived and proposed an integrative artificial photosynthesis platform, Solar Hunter, in which engineered strains, living biofilms and biofilms-interfaced semiconductor nanomaterials reside in harmony, carefully divid individuals' labor and synergistically work towards value-added products.  
+
We conceived and proposed an integrative artificial photosynthesis platform, Solar Hunter, in which engineered strains, living biofilms and biofilms-interfaced semiconductor nanomaterials reside in harmony, carefully divide individuals' labor and synergistically work towards value-added products.  
  
  
 
</div>
 
</div>
 
<div class="content" style="margin-top:5%">
 
<div class="content" style="margin-top:5%">
<div class="row"><h1>Integrative Biohydrogrn System</h1>
+
<div class="row"><center><h1><b>Integrative Biohydrogen System</b></h1></center>
 
<div class="col-lg-5">
 
<div class="col-lg-5">
 
<a href="https://2016.igem.org/Team:ShanghaitechChina/IBS"><img class="imground" src="https://static.igem.org/mediawiki/2016/c/c9/T--ShanghaitechChina--member--qlc--plan1_V5.jpg"></a>
 
<a href="https://2016.igem.org/Team:ShanghaitechChina/IBS"><img class="imground" src="https://static.igem.org/mediawiki/2016/c/c9/T--ShanghaitechChina--member--qlc--plan1_V5.jpg"></a>
 
</div>
 
</div>
<div class="col-lg-7" style="margin-top:10%">
+
<div class="col-lg-7" style="margin-top:20px" >
 
We proposed and demonstrated a sun-powered biofilm-interfaced artificial hydrogen-producing system, Solar Hunter, that harnesses the energy from sun light. Biofilm-anchored nanorods can efficiently convert photons to electrons, which seamlessly tap into the electron chain of engineered strain carrying FeFe hydrogenase gene cluster, thereby achieving high-efficiency hydrogen production. Furthermore, the intrinsic adherence of biofilms towards various interfaces allows us to grow biofilms on easy-separation micro-beads, therefore facilitating recyclable usage of the biofilm-anchored NRs and endowing this whole system with recyclability.
 
We proposed and demonstrated a sun-powered biofilm-interfaced artificial hydrogen-producing system, Solar Hunter, that harnesses the energy from sun light. Biofilm-anchored nanorods can efficiently convert photons to electrons, which seamlessly tap into the electron chain of engineered strain carrying FeFe hydrogenase gene cluster, thereby achieving high-efficiency hydrogen production. Furthermore, the intrinsic adherence of biofilms towards various interfaces allows us to grow biofilms on easy-separation micro-beads, therefore facilitating recyclable usage of the biofilm-anchored NRs and endowing this whole system with recyclability.
  
Line 201: Line 202:
 
</div>
 
</div>
 
<div class="row" style="margin-top:80px">
 
<div class="row" style="margin-top:80px">
<div class="col-lg-8" style="margin-top:10%">
+
<div class="col-lg-8" style="margin-top:20px">
 
Nanomaterials are those nanoscale objects serving as solar energy harvester. When firmly anchored onto <i>E. coli</i> biofilms through coordination chemistry, they can be easily recycled together with scalable biofilm coatings and still possess the capability to efficiently convert photons into electrons upon light exposure. The acquired electrons would tap into the electron chains of engineered strain harboring hydrogenase gene cluster, thereby fulfilling hydrogen production.
 
Nanomaterials are those nanoscale objects serving as solar energy harvester. When firmly anchored onto <i>E. coli</i> biofilms through coordination chemistry, they can be easily recycled together with scalable biofilm coatings and still possess the capability to efficiently convert photons into electrons upon light exposure. The acquired electrons would tap into the electron chains of engineered strain harboring hydrogenase gene cluster, thereby fulfilling hydrogen production.
 
</div>
 
</div>
Line 212: Line 213:
 
<a href="https://2016.igem.org/Team:ShanghaitechChina/Biofilm"><img class="imground" src="https://static.igem.org/mediawiki/2016/a/a4/T--ShanghaitechChina--member--qlc--biofilm.jpg"></a>
 
<a href="https://2016.igem.org/Team:ShanghaitechChina/Biofilm"><img class="imground" src="https://static.igem.org/mediawiki/2016/a/a4/T--ShanghaitechChina--member--qlc--biofilm.jpg"></a>
 
</div>
 
</div>
<div class="col-lg-8" style="margin-top:10%">
+
<div class="col-lg-8" style="margin-top:20px">
 
Biofilms function as a platform to sustain the whole system. Biofilms can immobilize NRs firmly so that they prevent potential damage and stresses caused by free NRs, as is the case in traditional artificial photosynthesis system.  In addition,  the intrinsic adherence of biofilms towards various interfaces, allows us to grow biofilms on easy-separation micro-beads. Based on those merits, biofilm stand out by facilitating recyclable usage of the biofilm-anchored NRs and endowing this whole system with recyclability.
 
Biofilms function as a platform to sustain the whole system. Biofilms can immobilize NRs firmly so that they prevent potential damage and stresses caused by free NRs, as is the case in traditional artificial photosynthesis system.  In addition,  the intrinsic adherence of biofilms towards various interfaces, allows us to grow biofilms on easy-separation micro-beads. Based on those merits, biofilm stand out by facilitating recyclable usage of the biofilm-anchored NRs and endowing this whole system with recyclability.
 
</div>
 
</div>
Line 219: Line 220:
 
<div class="row" style="margin-top:80px">
 
<div class="row" style="margin-top:80px">
  
<div class="col-lg-8">
+
<div class="col-lg-8" style="margin-top:20px">
 
In our sun-powered biofilm-interfaced hydrogen-producing system, hydrogenase harnessed in engineered <i>E. coli</i> are conceived to efficiently catalyze proton reduction upon receiving electrons originally donated by semiconductor nanomaterials. Electron transportation from semiconductors to hydrogenase could be bridged and facilitated by the use of mediators, methyl viologen. To achieve efficient enzymatic activities, we codon-optimized and constructed the whole hydrogenase gene clusters (from <i>Clostridium acetobutylicum</i>) by leveraging the multi-expression Acembl System.  
 
In our sun-powered biofilm-interfaced hydrogen-producing system, hydrogenase harnessed in engineered <i>E. coli</i> are conceived to efficiently catalyze proton reduction upon receiving electrons originally donated by semiconductor nanomaterials. Electron transportation from semiconductors to hydrogenase could be bridged and facilitated by the use of mediators, methyl viologen. To achieve efficient enzymatic activities, we codon-optimized and constructed the whole hydrogenase gene clusters (from <i>Clostridium acetobutylicum</i>) by leveraging the multi-expression Acembl System.  
 
</div>
 
</div>
Line 230: Line 231:
 
<video data-anchor-target="#vi" src="https://static.igem.org/mediawiki/2016/6/64/T--ShanghaitechChina--SolarHunter2.mp4" width="75%" style="margin-top:3%;margin-left:13%" controls="controls">
 
<video data-anchor-target="#vi" src="https://static.igem.org/mediawiki/2016/6/64/T--ShanghaitechChina--SolarHunter2.mp4" width="75%" style="margin-top:3%;margin-left:13%" controls="controls">
 
</video>
 
</video>
 +
<center>
 +
<p></p>
 +
ShanghaiTech University, No. 393, Huaxiazhong Rd., Zhangjiang High-tech Park, Pudong Area, Shanghai 201210, China. Correspondence
 +
<p></p>
 +
E-mail: zhongchao@shanghaitech.edu.cn
 +
</center>
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
 +
 
<script>
 
<script>
 
  var isMobile = function() {
 
  var isMobile = function() {

Latest revision as of 07:23, 2 December 2016

ShanghaiTech University