Difference between revisions of "Team:British Columbia/Human Practices"

m
m
Line 113: Line 113:
  
  
<div class="container">
+
<div class="container">
  <div class="row">
+
    <div class="row">
    <nav class="col-sm-3" id="side-menu">
+
      <div class="col-lg-12">
      <ul class="nav nav-pills nav-stacked">
+
         <h2 class="page-header">Project</h2>
         <li class="active"><a href="#who-we-are">Who We Are</a></li>
+
        <li><a href="#background">Background</a></li>
+
        <li><a href="#sci-comm">Science Communication</a></li>
+
      </ul>
+
    </nav>
+
    <div class="col-sm-9">
+
      <div id="who-we-are">
+
        <h1>Section 1</h1>
+
        <p>Try to scroll this section and look at the navigation list while scrolling!</p>
+
 
       </div>
 
       </div>
       <div id="background">
+
       <nav class="col-sm-3" id="side-menu">
         <h1>Section 2</h1>
+
         <ul class="nav sidebar-nav nav-pills nav-stacked green">
         <p>Try to scroll this section and look at the navigation list while scrolling!</p>
+
          <li class="active"><a href="#overview">Overview</a></li>
 +
          <li><a href="#s-layer">S-layer Engineering</a></li>
 +
          <li><a href="#bio-pathways">Biosynthetic Pathways</a></li>
 +
          <li><a href="#consortia">Consortia</a></li>
 +
         </ul>
 +
      </nav>
 +
      <div class="col-sm-9 text-center">
 +
        <section id="overview" class="anchor">
 +
          <h3>Overview</h3>
 +
        </section>
 +
 
 +
        <section id="s-layer" class="anchor">
 +
          <h3>S-layer Engineering</h3>
 +
          <p style="text-align: left">The mesophilic organism Lysinibacillus sphaericus CCM 2177 produces the surface (S)-layer protein SbpA, which after secretion completely covers the cell surface with a crystalline array exhibiting square lattice symmetry. Because of its excellent
 +
            in vitro recrystallization properties on solid supports, SbpA represents a suitable candidate for genetically engineering to create a versatile self-assembly system for the development of a molecular construction kit for nanobiotechnological
 +
            applications. The first goal of this study was to investigate the surface location of 3 different C-terminal amino acid positions within the S-layer lattice formed by SbpA. Therefore, three derivatives of SbpA were constructed, in</p>
 +
          <button href="#" id="read-more">Read more</button>
 +
        </section>
 +
 
 +
        <section id="bio-pathways" class="anchor">
 +
          <h3>Biosynthetic Pathways</h3>
 +
        </section>
 +
 
 +
        <section id="consortia" class="anchor">
 +
          <h3>Consortia</h3>
 +
        </section>
 +
 
 
       </div>
 
       </div>
      <div id="sci-comm">
+
     </div><!--row-->
        <h1>Section 3</h1>
+
   </div><!--container-->
        <p>Try to scroll this section and look at the navigation list while scrolling!</p>
+
</body>
      </div>
+
     </div><!--.col-sm-9-->
+
   </div><!--.row-->
+
</div><!--.container-->
+
  
 
</body>
 
</body>
 
</html>
 
</html>

Revision as of 21:40, 16 October 2016

Main CSS Navbar CSS

Bootstrap Example

Human Practices

Overview

S-layer Engineering

The mesophilic organism Lysinibacillus sphaericus CCM 2177 produces the surface (S)-layer protein SbpA, which after secretion completely covers the cell surface with a crystalline array exhibiting square lattice symmetry. Because of its excellent in vitro recrystallization properties on solid supports, SbpA represents a suitable candidate for genetically engineering to create a versatile self-assembly system for the development of a molecular construction kit for nanobiotechnological applications. The first goal of this study was to investigate the surface location of 3 different C-terminal amino acid positions within the S-layer lattice formed by SbpA. Therefore, three derivatives of SbpA were constructed, in

Biosynthetic Pathways

Consortia