Difference between revisions of "Team:ShanghaitechChina/IBS"

m
m
Line 39: Line 39:
 
In our experiment, we find that despite the reported affected catalytic ability of FeFe hydrogenase due to oxygen, non-strict anaerobic and short-term exposure to oxygen does not cause detrimental effects on the enzyme activity of producing hydrogen. This can be explained by the high catalytic ability and the segregation layer from the atmosphere provided by the hydrogen it produces. Meanwhile, the electron sacrificial agent VitaminC also adds to the “protection layer” of the hydrogenase in our system.<p></p>
 
In our experiment, we find that despite the reported affected catalytic ability of FeFe hydrogenase due to oxygen, non-strict anaerobic and short-term exposure to oxygen does not cause detrimental effects on the enzyme activity of producing hydrogen. This can be explained by the high catalytic ability and the segregation layer from the atmosphere provided by the hydrogen it produces. Meanwhile, the electron sacrificial agent VitaminC also adds to the “protection layer” of the hydrogenase in our system.<p></p>
 
<h3 id="AInstrument">(2) Instrument</h3>
 
<h3 id="AInstrument">(2) Instrument</h3>
 
+
  <div class="col-lg-6">
 +
<center><img src="https://static.igem.org/mediawiki/2016/6/60/T--ShanghaitechChina--chanqingzhuangzhizuizhong.png" style="width:72%"></center></div>
 
   <div class="col-lg-6">
 
   <div class="col-lg-6">
 
<center><img src="https://static.igem.org/mediawiki/2016/0/06/T--ShanghaitechChina--Hydrogenase--chanqingzhuangzhixijie.png" style="width:72%"></center>
 
<center><img src="https://static.igem.org/mediawiki/2016/0/06/T--ShanghaitechChina--Hydrogenase--chanqingzhuangzhixijie.png" style="width:72%"></center>
 
</div>
 
</div>
  <div class="col-lg-6">
+
 
<center><img src="https://static.igem.org/mediawiki/2016/6/60/T--ShanghaitechChina--chanqingzhuangzhizuizhong.png" style="width:72%"></center></div>
+
 
<p style="text-align:center"><b>Figure 1</b> Apparatus of the hydrogen production assay.</p>
 
<p style="text-align:center"><b>Figure 1</b> Apparatus of the hydrogen production assay.</p>
 
It contains (1)a light source in our hydrogen production assay acting as a substitute for the real sun. (We chose a high-power white LED light, set 28cm away from the reaction container for a even distribution of photons); (2)  an anaerobic reaction container which is a transparent circular cuvette that allows light to go through; (3) a hydrogen electrode linked to its inner sensor inserted into the reaction container to measure the realtime concentration of hydrogen; (4) a date hub; (5) a computer connected to the hub to record the data and generate the curve of concentration variation within a period of time. <p></p>
 
It contains (1)a light source in our hydrogen production assay acting as a substitute for the real sun. (We chose a high-power white LED light, set 28cm away from the reaction container for a even distribution of photons); (2)  an anaerobic reaction container which is a transparent circular cuvette that allows light to go through; (3) a hydrogen electrode linked to its inner sensor inserted into the reaction container to measure the realtime concentration of hydrogen; (4) a date hub; (5) a computer connected to the hub to record the data and generate the curve of concentration variation within a period of time. <p></p>

Revision as of 06:22, 19 October 2016

igem2016:ShanghaiTech