Difference between revisions of "Team:ETH Zurich/Detector Module"

Line 154: Line 154:
 
                     <p>
 
                     <p>
 
                         \begin{align*}
 
                         \begin{align*}
                         1) \quad & k_{mRNAmnect} \cdot P_{mNect} \cdot P_{activity} \\
+
                         1) \quad & k_{mRNAmnect} \cdot P_{mNect} \cdot p_{activity} \\
                         2) \quad & k_{mRNAsfgfp} \cdot P_{sfGFP} \cdot P_{activity} \\
+
                         2) \quad & k_{mRNAsfgfp} \cdot P_{sfGFP} \cdot p_{activity} \\
 
                         3) \quad & k_{mNect} \cdot mRNA_{mNect} \\
 
                         3) \quad & k_{mNect} \cdot mRNA_{mNect} \\
 
                         4) \quad & k_{sfGFP} \cdot mRNA_{sfGFP} \\
 
                         4) \quad & k_{sfGFP} \cdot mRNA_{sfGFP} \\
Line 173: Line 173:
 
                         </tr>
 
                         </tr>
 
                         <tr>
 
                         <tr>
                             <td>$P_{activity}$</td>
+
                             <td>$p_{activity}$</td>
 
                             <td>Fraction of the maximal activity of the promoter. This value is computed in the sensor module.</td>
 
                             <td>Fraction of the maximal activity of the promoter. This value is computed in the sensor module.</td>
 
                         </tr>
 
                         </tr>
Line 211: Line 211:
 
                     <div class="quicklinks" style="margin: 12px 0px;">
 
                     <div class="quicklinks" style="margin: 12px 0px;">
 
                         <ul>  
 
                         <ul>  
                             <li class="outline_item"><a href="https://2016.igem.org/Team:ETH_Zurich/Parameters#reporter">
+
                             <li class="outline_item">
                                 <img src="https://static.igem.org/mediawiki/2016/7/72/T--ETH_Zurich--arrow.svg">PARAMETER VALUES</a>
+
                                 <img src="https://static.igem.org/mediawiki/2016/7/72/T--ETH_Zurich--arrow.svg">For parameter values, please check <a href="https://2016.igem.org/Team:ETH_Zurich/Parameters#reporter">PARAMETERS</a>
 
                             </li>
 
                             </li>
 
                         </ul>
 
                         </ul>
Line 222: Line 222:
 
             <div>
 
             <div>
 
                 <h3>CHARACTERIZATION</h3>
 
                 <h3>CHARACTERIZATION</h3>
                 <p>The reporter has been characterized by placing the fluorescent proteins under an aTc-inducible promoter. In this case the activity of the promoter is modeled as:</p>
+
                 <p>The reporter has been characterized by placing the fluorescent proteins sfGFP and mNectarine under an anhydrotetracycline (aTc-inducible promoter. In this case the activity of the promoter is modeled as:</p>
 
                 <p>\begin{align*}
 
                 <p>\begin{align*}
                     P_{activity}=l_{pTet}+(1-l_{pTet})\cdot\frac{[aTc]^{n}}{K_m^n+[aTc]^{n}}
+
                     p_{activity}=l_{pTet}+(1-l_{pTet})\cdot\frac{[aTc]^{n}}{K_m^n+[aTc]^{n}}
 
                 \end{align*}</p>
 
                 \end{align*}</p>
                 <p>Where aTc is the tetracycline variant used for induction, $l_{pTet}$ is the leakiness of the promoter, $n$ the sensitivity to aTc and $K_m$ the affinity.</p>
+
                 <p>Where $l_{pTet}$ is the leakiness of the promoter, $n$ the steepness of the aTc-dependent activation and $K_m$ the concentration of aTc at which 50% of aTc-induced promoter activity is observed.</p>
 
             </div>
 
             </div>
 
         </div>
 
         </div>
Line 234: Line 234:
 
                 <ul>
 
                 <ul>
 
                     <li>Conservation of the total number of promoters inside a cell: $P_{sfGFP}+P_{mNect}=P_{tot}$</li>
 
                     <li>Conservation of the total number of promoters inside a cell: $P_{sfGFP}+P_{mNect}=P_{tot}$</li>
                     <li>Independency between switching and repression of the promoters. This allows repression to be modeled in the sensor module and switching in the switch module.</li>
+
                     <li>Independency between switching and repression of the promoters. This allows to model the repression in the sensor module and the switching in the switch module.</li>
 
                 </ul>
 
                 </ul>
 
             </div>
 
             </div>
Line 242: Line 242:
 
                 <h2>RESULTS</h2>
 
                 <h2>RESULTS</h2>
 
                 <h3>STOCHASTIC PARAMETER ESTIMATION</h3>
 
                 <h3>STOCHASTIC PARAMETER ESTIMATION</h3>
                 <p>We estimated the parameters for the reporter genes and the tet promoter stochastically using flow cytometry measurements. The simulated distribution was fitted to the measurements by <i>Approximate Bayesian computation (ABC)</i> usign the <h href="https://2016.igem.org/Team:ETH_Zurich/Parameters">INSIGHT</a> tool.</p>
+
                 <p>We estimated the parameters for the reporter genes and the tet promoter stochastically using flow cytometry measurements. The simulated distribution was fitted to the measurements by <i>Approximate Bayesian Computation (ABC)</i> usign the <h href="https://2016.igem.org/Team:ETH_Zurich/Parameters">INSIGHT</a> tool.</p>
 
                 <p>The figure below shows the distributions of the estimated parameters. The parameters page reports the <i>maximum a posteriori (MAP)</i> estimates, which are used in the simulation and analysis of our system.</p>
 
                 <p>The figure below shows the distributions of the estimated parameters. The parameters page reports the <i>maximum a posteriori (MAP)</i> estimates, which are used in the simulation and analysis of our system.</p>
 
                 <div class="image_box full_size">
 
                 <div class="image_box full_size">
Line 248: Line 248:
 
                         <img src="https://static.igem.org/mediawiki/2016/6/63/T--ETH_Zurich--ptet_sfgfp_distribution.png">
 
                         <img src="https://static.igem.org/mediawiki/2016/6/63/T--ETH_Zurich--ptet_sfgfp_distribution.png">
 
                     </a>
 
                     </a>
                     <p><b>Figure 3:</b> Distributions of the parameters stochastically estimated from the experimental data. The leakiness ($l_{Ptet}=0.06$) and the cooperativity ($n=1.57$) of the tet promoter are well estimated, while $K_m$ (not shown, see next section) is badly identified. Production and degradation rates also have good quality estimates (see <a href="https://2016.igem.org/Team:ETH_Zurich/Parameters#reporter">parameters</a>), it's important to note that degradation rates include dilution as well.</p>
+
                     <p><b>Figure 3:</b> Parameter estimations from flow cytometry data using stochastic simulation. The leakiness ($l_{Ptet}=0.06$) and the cooperativity ($n=1.57$) of the tet promoter are well estimated, while the $K_m$ value was difficult to identify and showed a broad estimate of 4,000-10,000 nM (not shown, see next section for explanation). Production and degradation rates have been nicely estimated (see <a href="https://2016.igem.org/Team:ETH_Zurich/Parameters#reporter">parameters</a>). Note that the degradation rates include also the dilution due to cell division.</p>
 
                 </div>
 
                 </div>
  
 
                 <h3>EXPERIMENTAL DESIGN IMPROVEMENT</h3>
 
                 <h3>EXPERIMENTAL DESIGN IMPROVEMENT</h3>
                 <p>Parameter estimation for the tet promoter revealed that the half-occupation $K_m$ of the tet promoter is in the order of 9000 nM. This is about double the maximum aTc concentration we were using for induction (2000 ng/mL = 4320.6 nM) in the experiments, meaning we were not using the full range of the promoter.</p>
+
                 <p>The parmeter estimation for the deterministic model of the tet promoter revealed that the $K_m$ value is approximately 9000 nM. This is about double the maximum aTc concentration we were using for induction (2000 ng/mL = 4320.6 nM) in the experiments. This means, we were not measuring the full range of the promoter activation.</p>
                 <p>Since cells die at higher aTc concentrations, we need to reduce the concentration of the TetR repressor in the cells. We suggested to the experimentalists to use a low (~5) copy plasmid for TetR expression instead of the medium-low (~15-20) copy plasmid originally used. We expect this change to lower $K_m$ so that we can better induce the Tet promoter. This change was indeed effective and allowed us to properly induce the recombinase in our <a href="https://2016.igem.org/Team:ETH_Zurich/Results">characterization experiment</a>.</p>
+
                 <p>Because we observed that our cells die at higher aTc concentrations, we decided that we need to reduce the concentration of the TetR repressor. We suggested the experimentalists to use a low (~5) copy plasmid for TetR expression instead of the medium-low (~15-20) copy plasmid originally used. We expected that this would result in a lower $K_m$ value such that we can fully induce the Tet promoter with 2000 ng/ml aTc. This change was indeed effective and allowed us to properly induce the recombinase in our <a href="https://2016.igem.org/Team:ETH_Zurich/Results">characterization experiment</a>.</p>
  
 
                 <h3>OUTPUT INTERPRETATION</h3>
 
                 <h3>OUTPUT INTERPRETATION</h3>
Line 260: Line 260:
 
                         <img src="https://static.igem.org/mediawiki/2016/3/35/T--ETH_Zurich--gfp_response.png">
 
                         <img src="https://static.igem.org/mediawiki/2016/3/35/T--ETH_Zurich--gfp_response.png">
 
                     </a>
 
                     </a>
                     <p><b>Figure 4:</b> Amount of GFP expression as a function of the state of the switch 2 hours after induction by the candidate marker. The relation is linear, but other factors like linear range of the measurement device must be taken in account.</p>
+
                     <p><b>Figure 4:</b> Amount of GFP expression as a function of the state of the switch 2 hours after induction by the candidate marker. The relation is linear which enables to properly determine the concentration of the candidate marker. However, to enable a quantitative measurement, the fluorescence measurement device (for instance flow cytometer) must be adjusted to the linear detection range.</p>
 
                 </div>
 
                 </div>
                     <p>Figure 4 shows a simualtion of the GFP expression after induction by the candidate marker. Clearly the amount of expressed GFP increase linearly with the number of flipped promoters in the switch. This is shown also by applying the analytical solution of the steady-state of a production-degradation system to our reporter. The relationship between the measured fluorescence and the switch state $P_{sfGFP}$ can be formulated as:</p>
+
                     <p>Figure 4 shows a simulation of the GFP expression after induction by the candidate marker. Clearly the amount of expressed GFP increases linearly with the number of flipped promoters in the switch. This is also shown by applying the analytical solution of the steady-state of a production-degradation system to our reporter. The relationship between the measured fluorescence and the switch state $P_{sfGFP}$ can be formulated as:</p>
 
                     <p style="max-width:50%">\begin{align*}
 
                     <p style="max-width:50%">\begin{align*}
 
                         fluorescence_{SS}=k_{fl} \cdot \frac{k_{sfGFP}}{d_{sfGFP}} \cdot \frac{k_{mRNAsfgfp}}{d_{mRNAsfgfp}}\cdot P_{sfGFP}
 
                         fluorescence_{SS}=k_{fl} \cdot \frac{k_{sfGFP}}{d_{sfGFP}} \cdot \frac{k_{mRNAsfgfp}}{d_{mRNAsfgfp}}\cdot P_{sfGFP}
 
                     \end{align*}</p>
 
                     \end{align*}</p>
                     <p>Where $k_{fl}$ is the device-dependent ratio between measured fluorescence and protein concentration. This is a nice property of the system, because it allows to compute the state of the switch easily by just looking at the amount of expressed GFP. Since our reporter is placed on a medium-low copy plasmid, we can assume that GFP expression is not too stressful for the cell and the computed relationship holds in practice.</p>
+
                     <p>Where $k_{fl}$ is the device-dependent ratio between measured fluorescence and protein concentration. This is a nice property of the system, because it allows to compute the state of the switch easily by measuring the amount of expressed GFP. Since our reporter is expressed on a medium-low copy plasmid, we can assume that GFP expression is not too stressful for the cell and that the computed relationship holds in practice.</p>
                     <p>However, the relationship above is true only if samples are taken in the linear range of the measurement device. If this is not the case samples must be diluted so that measurements fit into the linear range.</p>
+
                     <p>However, the relationship above is true only if samples are taken in the linear range of the measurement device. If this is not the case samples must be diluted such that fluorescence intensity lies in the linear range.</p>
 
             </div>
 
             </div>
 
         </div>
 
         </div>

Revision as of 21:20, 19 October 2016

REPORTER MODULE

OVERVIEW

Figure 1: Schematic of the reporter of our circuit. Only if the switch is turned on and the same marker that activated the switch is detected, the reporter circuit expresses GFP.

After the conditioning phase in which the switch is turned on if nitric oxide and AHL (or lactate) are detected at the same time, we have to identify the state of the switch and which one of the markers has been detected. The reporter is the component of the circuit that enables such a readout in the lab. The state of the switch is displayed by two different fluorescent proteins: sfGFP is expressed by the promoter that has been switched, while the promoter that didn't switch expresses mNectarine.

To allow multiplexing, the reporter proteins are expressed only if they are induced by the same candidate marker that triggered the switch earlier during the learning phase.

GOALS

  • To characterize the relationship between switch state and reporter expression.
  • Estimate parameters necessary for characterizing sensor and switch.

MODEL

Our reporter system consists of two fluorescent proteins that report the state of the switch. In the non-switched state (OFF state), the plasmid expresses mNectarine, while after activation, the switched plasmid expresses GFP (ON state).

The model is based on mass-action kinectics and can be simulated both deterministically and stochastically.

Figure 2: Biological implementation of the integrase reporter. The figure shows both the switched and non-switched state. Expression of the reporter proteins is repressed by default and induced in presence of the candidate marker.

The following section describes the species and reactions of the ODE model:

REACTIONS

\begin{align*} 1) && P_{mNect} & \rightarrow P_{mNect} + mRNA_{mNect} \\ 2) && P_{sfGFP} & \rightarrow P_{sfGFP} + mRNA_{sfGFP} \\ 3) && mRNA_{mNect} & \rightarrow mRNA_{mNect} + mNect \\ 4) && mRNA_{sfGFP} & \rightarrow mRNA_{sfGFP} + sfGFP \\ 5) && mRNA_{mNect} & \rightarrow \\ 6) && mRNA_{sfGFP} & \rightarrow \\ 7) && mNect & \rightarrow \\ 8) && sfGFP & \rightarrow \\ \end{align*}

SPECIES

Name Description
$P_{mNect}$ Non switched promoter, facing the mNectarine gene.
$P_{sfGFP}$ Switched promoter, facing the sfGFP gene.
$mRNA_{mNect}$ mRNA of the mNectarine protein.
$mRNA_{sfGFP}$ mRNA of the sfGFP protein.
$mNect$ mNectarine fluorescent protein.
$sfGFP$ Superfolder GFP protein.

STOCHASTIC REACTION RATES

\begin{align*} 1) \quad & k_{mRNAmnect} \cdot P_{mNect} \cdot p_{activity} \\ 2) \quad & k_{mRNAsfgfp} \cdot P_{sfGFP} \cdot p_{activity} \\ 3) \quad & k_{mNect} \cdot mRNA_{mNect} \\ 4) \quad & k_{sfGFP} \cdot mRNA_{sfGFP} \\ 5) \quad & d_{mRNAmnect} \cdot mRNA_{mNect} \\ 6) \quad & d_{mRNAsfgfp} \cdot mRNA_{sfGFP} \\ 7) \quad & d_{mNect} \cdot mNect \\ 8) \quad & d_{sfGFP} \cdot sfGFP \\ \end{align*}

PARAMETERS

Name Description
$p_{activity}$ Fraction of the maximal activity of the promoter. This value is computed in the sensor module.
$k_{mRNAmnect}$ mNectarine mRNA transcription rate.
$k_{mRNAsfgfp}$ sfGFP mRNA transcription rate.
$k_{mNect}$ mNectarine translation rate.
$k_{sfGFP}$ sfGFP translation rate.
$d_{mRNAmnect}$ mNectarine mRNA degradation rate.
$d_{mRNAsfgfp}$ sfGFP mRNA degradation rate.
$d_{mNect}$ mNectarine degradation rate.
$d_{sfGFP}$ sfGFP degradation rate.

CHARACTERIZATION

The reporter has been characterized by placing the fluorescent proteins sfGFP and mNectarine under an anhydrotetracycline (aTc-inducible promoter. In this case the activity of the promoter is modeled as:

\begin{align*} p_{activity}=l_{pTet}+(1-l_{pTet})\cdot\frac{[aTc]^{n}}{K_m^n+[aTc]^{n}} \end{align*}

Where $l_{pTet}$ is the leakiness of the promoter, $n$ the steepness of the aTc-dependent activation and $K_m$ the concentration of aTc at which 50% of aTc-induced promoter activity is observed.

ASSUMPTIONS

  • Conservation of the total number of promoters inside a cell: $P_{sfGFP}+P_{mNect}=P_{tot}$
  • Independency between switching and repression of the promoters. This allows to model the repression in the sensor module and the switching in the switch module.

RESULTS

STOCHASTIC PARAMETER ESTIMATION

We estimated the parameters for the reporter genes and the tet promoter stochastically using flow cytometry measurements. The simulated distribution was fitted to the measurements by Approximate Bayesian Computation (ABC) usign the INSIGHT tool.

The figure below shows the distributions of the estimated parameters. The parameters page reports the maximum a posteriori (MAP) estimates, which are used in the simulation and analysis of our system.

Figure 3: Parameter estimations from flow cytometry data using stochastic simulation. The leakiness ($l_{Ptet}=0.06$) and the cooperativity ($n=1.57$) of the tet promoter are well estimated, while the $K_m$ value was difficult to identify and showed a broad estimate of 4,000-10,000 nM (not shown, see next section for explanation). Production and degradation rates have been nicely estimated (see parameters). Note that the degradation rates include also the dilution due to cell division.

EXPERIMENTAL DESIGN IMPROVEMENT

The parmeter estimation for the deterministic model of the tet promoter revealed that the $K_m$ value is approximately 9000 nM. This is about double the maximum aTc concentration we were using for induction (2000 ng/mL = 4320.6 nM) in the experiments. This means, we were not measuring the full range of the promoter activation.

Because we observed that our cells die at higher aTc concentrations, we decided that we need to reduce the concentration of the TetR repressor. We suggested the experimentalists to use a low (~5) copy plasmid for TetR expression instead of the medium-low (~15-20) copy plasmid originally used. We expected that this would result in a lower $K_m$ value such that we can fully induce the Tet promoter with 2000 ng/ml aTc. This change was indeed effective and allowed us to properly induce the recombinase in our characterization experiment.

OUTPUT INTERPRETATION

Figure 4: Amount of GFP expression as a function of the state of the switch 2 hours after induction by the candidate marker. The relation is linear which enables to properly determine the concentration of the candidate marker. However, to enable a quantitative measurement, the fluorescence measurement device (for instance flow cytometer) must be adjusted to the linear detection range.

Figure 4 shows a simulation of the GFP expression after induction by the candidate marker. Clearly the amount of expressed GFP increases linearly with the number of flipped promoters in the switch. This is also shown by applying the analytical solution of the steady-state of a production-degradation system to our reporter. The relationship between the measured fluorescence and the switch state $P_{sfGFP}$ can be formulated as:

\begin{align*} fluorescence_{SS}=k_{fl} \cdot \frac{k_{sfGFP}}{d_{sfGFP}} \cdot \frac{k_{mRNAsfgfp}}{d_{mRNAsfgfp}}\cdot P_{sfGFP} \end{align*}

Where $k_{fl}$ is the device-dependent ratio between measured fluorescence and protein concentration. This is a nice property of the system, because it allows to compute the state of the switch easily by measuring the amount of expressed GFP. Since our reporter is expressed on a medium-low copy plasmid, we can assume that GFP expression is not too stressful for the cell and that the computed relationship holds in practice.

However, the relationship above is true only if samples are taken in the linear range of the measurement device. If this is not the case samples must be diluted such that fluorescence intensity lies in the linear range.

Thanks to the sponsors that supported our project: