Line 652: | Line 652: | ||
<p class="content">Recent research shows that the spider toxin proteins containing ICK structure, for example, ω-hexatoxin-Hv1a (Hv1a), have high stability against temperature, pH, solvents and protease. In contrast, when Hv1a is denatured to linear form, it loses its stability and then degrades rapidly. [1]</p> | <p class="content">Recent research shows that the spider toxin proteins containing ICK structure, for example, ω-hexatoxin-Hv1a (Hv1a), have high stability against temperature, pH, solvents and protease. In contrast, when Hv1a is denatured to linear form, it loses its stability and then degrades rapidly. [1]</p> | ||
<p class="content">There are many possible processes of Pantide degradation we discussed below. (Figure 1) Pantide may have a chance to be reduced to a linear form by reductants or reductases. For both native form and linear form proteins, it may suffer hydrolysis and proteolysis, resulting in denaturing or amino acid cleavage. Also, UV light of sun also leads to Pantide degradation. Though the energy of UV light may not be not enough to break the covalent bonds efficiently, proteins still could undergo radiolytic oxidation.</p> | <p class="content">There are many possible processes of Pantide degradation we discussed below. (Figure 1) Pantide may have a chance to be reduced to a linear form by reductants or reductases. For both native form and linear form proteins, it may suffer hydrolysis and proteolysis, resulting in denaturing or amino acid cleavage. Also, UV light of sun also leads to Pantide degradation. Though the energy of UV light may not be not enough to break the covalent bonds efficiently, proteins still could undergo radiolytic oxidation.</p> | ||
+ | <div> | ||
+ | <img src=”” class=”picture”> | ||
+ | <p class=”Figure 1. Pantide degradation process”></p> | ||
+ | </div> | ||
+ | <p class="content">According to this degradation process, we attempted to build up our model. The degradation rate of Pantide is contributed by hydrolysis, proteolysis, UV radiolytic oxidation and the reduction to linear form. We considered that the rate Pantide transformed to linear form is a part of degradation rate because linear form protein loses its function and it is also likely to be degraded.</p> | ||
+ | <p class="content">However, since the whole process is too complex to verify, we divided the experiment into three parts, hydrolysis test, proteolysis test and UV radiolytic oxidation test, and further summarized the results to conclude. The purpose is to find out the degradation rate of Pantide and to verify the less stable linear form protein has.</p> | ||
+ | <p class="content">On the other hand, because ICK structure domain mainly contributes the stability of these proteins; we could assume that the degradation processes of three target proteins are roughly the same, for the reason that, we chose Hv1a and Hv1a with lectin (Hv1a-lectin) to demonstrate.</p> | ||
</div> | </div> | ||
+ | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<!--3--> | <!--3--> | ||
<div class="modelingPart"> | <div class="modelingPart"> |
Revision as of 23:05, 19 October 2016