Difference between revisions of "Team:SUSTech Shenzhen/Model/Calibration"

(No difference)

Revision as of 19:30, 17 October 2016

Team SUSTC-Shenzhen

Test

test page

Calibration of fluid flow velocity

To visualize the flow profile, rainbow beads (SPHEROTM Rainbow Calibration Particles, Cat No. RCP-60-5, Lot No. AB01, diameter: 6um[1]) were dissolved in the cell culture medium, which contained the dead cells. A series of pumped flow rate(5μl/min, 15μl/min, and 45μl/min) were applied to generate a steady fluid flow. The exposure time was set to 100ms so that the length of the streakline (shown as a gray line in picture) represented the total traveling distance of the beads during the exposure. Fig. 1 shows a typical image of a bead trace in the fast microfluidics channel with a pumped flow rate of 5μl/min. To minimize hydraulic effects of the PDMS walls, the pictures were taken from the midplane of the channel providing the maximum flow velocity. Note that the traveling direction of the beads was left. Each streak was measured separately, and the average length of all streaks in one particular channel divides the exposure time was regarded as the maximum flow velocity of this channel. [2]

T--SUSTech Shenzhen--DB56D45F-D056-4A82-897A-2CE77C2C4A12.png
Fig. 1: a typical image of a bead trace in the fast microfluidics channel with a pumped flow rate of 5μl/min.

Experiment

To minimize the error, we took pictures on fast microfluidics channel when pumped flow rate was 5μl/min; on mid microfluidics channel when pumped flow rate was 15μl/min; on slow microfluidics channel when pumped flow rate was 45μl/min, considering that fluid flow velocity is proportional to pumped flow rate.

Data collection blow:

channel flow rate(μl/min) length①(um) length②(um) length③(um)
fast 5 630 455 610
mid 15 180 160 180
slow 45 48 75 80

Result

We wrote a MatLab program to calculate the maximum flow velocities. Codes were shown below:

MatLab Code:

ex_fast=[630,455,610]*90;

% align the data to um/s by multiply 10 and convert to 45μl/min

ex_mid=[180,160,180]*30;

ex_slow=[48,75,80]*10;

ex_fast_mean=mean(ex_fast); ex_fast_std=std(ex_fast);

ex_mid_mean=mean(ex_mid); ex_mid_std=std(ex_mid);

ex_slow_mean=mean(ex_slow); ex_slow_std=std(ex_slow);

Note: ex_fast_mean is the mean value of maximum flow velocity of fast microfluidics channel when pumped flow rate is 45μl/min, ex_fast_std is its standard deviation, et cetera.

variable mean(um/s) variable std(um/s)
ex_fast_mean 50850 ex_fast_std 8600
ex_mid_mean 5200 ex_mid_std 350
ex_slow_mean 676 ex_slow_std 170

The ratio of maximum velocities in 3 different channels is 13:100:978.

T--SUSTech Shenzhen--855C7E02-2E51-441A-9492-A2B281185010.png
Fig. 2: the graph of fluid flow velocities results under the pumped flow rate of 45μl/min.

Reference

  1. Rainbow beads official website, Retrieved from http://www.spherotech.com.
  2. Maneshi MM, Sachs F, Hua SZ, A Threshold Shear Force for Calcium Influx in an Astrocyte Model of Traumatic Brain Injury.J Neurotrauma. 2015 Jul 1, 32(13) : p. 1020-9.

Made by from the iGEM team SUSTech_Shenzhen.

Licensed under CC BY 4.0.