Difference between revisions of "Team:ShanghaitechChina/Proof"

Line 81: Line 81:
 
<p></p>
 
<p></p>
 
<center>
 
<center>
<img src="https://static.igem.org/mediawiki/parts/f/f2/Shanghaitechchina_Histag  %2BQDs.png" style="width:40%;">
+
<img src="https://static.igem.org/mediawiki/parts/9/95/Shanghaitechchina_CsgAhis_CR.png" style="width:40%;">
 
</center>
 
</center>
 
<p style="text-align:center"><b>Fig 1.</b> Fluorescence test of CsgA-His binding with nanomaterials</p>
 
<p style="text-align:center"><b>Fig 1.</b> Fluorescence test of CsgA-His binding with nanomaterials</p>
T This assay indicates the success in expression of the self-assembly curli fibers. <p></p>
+
This assay indicates the success in expression of the self-assembly curli fibers. <p></p>
  
  
Line 91: Line 91:
 
<p></p>
 
<p></p>
 
<center>
 
<center>
<img src="https://static.igem.org/mediawiki/parts/f/f2/Shanghaitechchina_Histag  %2BQDs.png" style="width:40%;">
+
<img src="https://static.igem.org/mediawiki/parts/b/bc/Shanghaitechchina_crystalviolethistag.png" style="width:40%;">
 
</center>
 
</center>
 
<p style="text-align:center"><b>Fig 2.</b>Crystal violet assay of CsgA-Histag.</p>
 
<p style="text-align:center"><b>Fig 2.</b>Crystal violet assay of CsgA-Histag.</p>
T This assay indicates the success in expression of the self-assembly curli fibers. <p></p>
+
This assay indicates the success in expression of the self-assembly curli fibers. <p></p>
 
This difference between induced strains secreted CsgA-Histag and ΔCsgA manifest a distinct extracellular biofilm production in the modified strain. <p></p>
 
This difference between induced strains secreted CsgA-Histag and ΔCsgA manifest a distinct extracellular biofilm production in the modified strain. <p></p>
  
Line 103: Line 103:
 
After confirming that our parts success in biofilm expression, we are going to test the effect of binding between CsgA-Histag  mutant and inorganic nanoparticles. The result was consistent with our anticipation: On the left, CsgA-Histag  mutant were induced and QDs are attached with biofilms, thus show bright fluorescence. Therefore, we ensure the stable coordinate bonds between CsgA-Histag  mutant and QDs.The picture was snapped by ChemiDoc MP,BioRad, false colored.<p></p>
 
After confirming that our parts success in biofilm expression, we are going to test the effect of binding between CsgA-Histag  mutant and inorganic nanoparticles. The result was consistent with our anticipation: On the left, CsgA-Histag  mutant were induced and QDs are attached with biofilms, thus show bright fluorescence. Therefore, we ensure the stable coordinate bonds between CsgA-Histag  mutant and QDs.The picture was snapped by ChemiDoc MP,BioRad, false colored.<p></p>
 
<center>
 
<center>
<img src="https://static.igem.org/mediawiki/parts/f/f2/Shanghaitechchina_Histag %2BQDs.png" style="width:40%;">
+
<img src="https://static.igem.org/mediawiki/parts/f/f2/Shanghaitechchina_Histag%2BQDs.png" style="width:40%;">
 
</center>
 
</center>
 
<p style="text-align:center"><b>Fig 3.</b> Fluorescence test of CsgA-His binding with nanomaterials</p>
 
<p style="text-align:center"><b>Fig 3.</b> Fluorescence test of CsgA-His binding with nanomaterials</p>
Line 110: Line 110:
 
Since biofilm nanofibers are thin and inconspicuous against the background, we harness CdSe QDs binding to highlight the biofilm area. <p></p>
 
Since biofilm nanofibers are thin and inconspicuous against the background, we harness CdSe QDs binding to highlight the biofilm area. <p></p>
 
</center>
 
</center>
<img src="https://static.igem.org/mediawiki/parts/f/f0/Shanghaitechchina_CsgAHistag %2BQD.png" style="width:80%;">
+
<img src="https://static.igem.org/mediawiki/parts/f/f0/Shanghaitechchina_CsgAHistag%2BQD.png" style="width:80%;">
 
<p style="text-align:center">
 
<p style="text-align:center">
 
<b>Fig 4.</b>Representative TEM images of biotemplated  CdS quantum dots on CsgA-His.  
 
<b>Fig 4.</b>Representative TEM images of biotemplated  CdS quantum dots on CsgA-His.  
Line 116: Line 116:
 
Finally, transmission electron microscopy(TEM) visualize the microscopic binding effect of CsgA-Histag fused biofilm with CdS nanorods in comparison with image of pure nanofiber composed by CsgA-Histag and one without inducer. Thus we ultimately confirm the viability of bio-abiotic hybrid system.<p></p>
 
Finally, transmission electron microscopy(TEM) visualize the microscopic binding effect of CsgA-Histag fused biofilm with CdS nanorods in comparison with image of pure nanofiber composed by CsgA-Histag and one without inducer. Thus we ultimately confirm the viability of bio-abiotic hybrid system.<p></p>
 
<center>
 
<center>
<img src="https://static.igem.org/mediawiki/parts/e/e1/Shanghaitechchina_CsgAHistag %2Bnanorods.png" style="width:80%;">
+
<img src="https://static.igem.org/mediawiki/parts/e/e1/Shanghaitechchina_CsgAHistag%2Bnanorods.png" style="width:80%;">
 
</center>
 
</center>
 
<p style="text-align:center"><b>Fig 5.</b>Representative TEM images of biotemplated  CdS nanorods on CsgA-His. </p>
 
<p style="text-align:center"><b>Fig 5.</b>Representative TEM images of biotemplated  CdS nanorods on CsgA-His. </p>
Line 130: Line 130:
 
<div class="col-lg-4">
 
<div class="col-lg-4">
 
<center>
 
<center>
<img src="https://static.igem.org/mediawiki/parts/c/c8/Shanghaitechchina_hisCsgASpyCatcherHistag  _CR.png" style="width:30%;">
+
<img src="https://static.igem.org/mediawiki/parts/0/05/Shanghaitechchina_HISCsgASpyCatcher_CR.png" style="width:30%;">
 
</center>
 
</center>
 
<p style="text-align:center"><b>Fig 5.</b> Congo Red Assay of His-CsgA-SpyCatcher-Histag.</p>
 
<p style="text-align:center"><b>Fig 5.</b> Congo Red Assay of His-CsgA-SpyCatcher-Histag.</p>
Line 152: Line 152:
 
TEM further characterize the biofilm expressed by strains secreted His-CsgA-SpyCatcher-Histag  (HSCH). The distinct nanofiber network manifests the large biofilm expression.<p></p>
 
TEM further characterize the biofilm expressed by strains secreted His-CsgA-SpyCatcher-Histag  (HSCH). The distinct nanofiber network manifests the large biofilm expression.<p></p>
 
<center>
 
<center>
<img src="https://static.igem.org/mediawiki/parts/d/d5/Shanghaitechchina_hsch.png" style="width:60%;align:center">
+
<img src="https://static.igem.org/mediawiki/parts/d/d5/Shanghaitechchina_hsch.png" style="width:80%;align:center">
 
</center>
 
</center>
 
<p style="text-align:center"><b>Fig 7.</b> aTc induced secretion of His-CsgA-SpyCatcher-Histag  visualized by TEM. Without the presence of inducer, there’s no nanofiber formation around scattered bacteria.</p>
 
<p style="text-align:center"><b>Fig 7.</b> aTc induced secretion of His-CsgA-SpyCatcher-Histag  visualized by TEM. Without the presence of inducer, there’s no nanofiber formation around scattered bacteria.</p>
 
CsgA-His can interface with different inorganic materials since they form the coordinate bonds with the same ligand, Co-NTA, on nanomaterials. Here we use to AuNPs in place of quantum dots and nanomaterials to characterize the validity of Histags on CsgA fused amyloid protein and meanwhile prove the versatility of our biofilm-based platform.  As the figures shown, we confirm the feasibility of our newly constructed biobricks to template inorganic material and thus form bio-abiotic hybrid system.<p></p>
 
CsgA-His can interface with different inorganic materials since they form the coordinate bonds with the same ligand, Co-NTA, on nanomaterials. Here we use to AuNPs in place of quantum dots and nanomaterials to characterize the validity of Histags on CsgA fused amyloid protein and meanwhile prove the versatility of our biofilm-based platform.  As the figures shown, we confirm the feasibility of our newly constructed biobricks to template inorganic material and thus form bio-abiotic hybrid system.<p></p>
 
<center>
 
<center>
<img src="https://static.igem.org/mediawiki/parts/e/ec/Shanghaitechchina_Au.png" style="width:60%;align:center">
+
<img src="https://static.igem.org/mediawiki/parts/e/ec/Shanghaitechchina_Au.png" style="width:80%;align:center">
 
</center>
 
</center>
 
<p style="text-align:center"><b>Fig 8.</b> After aTc induced, biofilm secreted by His-CsgA-SpyCatcher-Histag  organizes AuNP around the cells. </p>
 
<p style="text-align:center"><b>Fig 8.</b> After aTc induced, biofilm secreted by His-CsgA-SpyCatcher-Histag  organizes AuNP around the cells. </p>
Line 169: Line 169:
 
<div class="col-lg-12">
 
<div class="col-lg-12">
 
<center>
 
<center>
<img src="https://static.igem.org/mediawiki/parts/c/c8/Shanghaitechchina_hisCsgASpyCatcherHistag  _CR.png" style="width:40%;">
+
<img src="https://static.igem.org/mediawiki/parts/5/5c/Shanghaitechchina_mcherry-SpyTag%2BCsgA-SpyCatcher.png" style="width:40%;">
 
</center>
 
</center>
 
<p style="text-align:center"><b>Fig 9.</b>mcherry-SpyTag fluorescence protein binding test of His-CsgA-SpyCatcher-(Histag). </p>
 
<p style="text-align:center"><b>Fig 9.</b>mcherry-SpyTag fluorescence protein binding test of His-CsgA-SpyCatcher-(Histag). </p>
 
</div>
 
</div>
 
 
<h4><b>6.Inducer concentration optimization</b></h4>
 
<h4><b>6.Inducer concentration optimization</b></h4>
 
We cultured all E.coli mutants in multi-wells with increasing inducer gradient. The result demonstrated in accordance that 0.25 μg ml-1 of aTc will induce the best expression performance of biofilm, which is exactly the inducer concentration we applied in the project.  
 
We cultured all E.coli mutants in multi-wells with increasing inducer gradient. The result demonstrated in accordance that 0.25 μg ml-1 of aTc will induce the best expression performance of biofilm, which is exactly the inducer concentration we applied in the project.  
 
 
  <p></p>
 
  <p></p>
 
 
 
<div class="col-lg-12">
 
<div class="col-lg-12">
 
<center>
 
<center>
<img src="https://static.igem.org/mediawiki/parts/c/c8/Shanghaitechchina_hisCsgASpyCatcherHistag  _CR.png" style="width:40%;">
+
<img src="https://static.igem.org/mediawiki/parts/2/23/Shanghaitechchina_inducer_concentration.png" style="width:40%;">
 
</center>
 
</center>
 
<p style="text-align:center"><b>Fig 10.</b>Inducer concentration gradient test. </p>
 
<p style="text-align:center"><b>Fig 10.</b>Inducer concentration gradient test. </p>
Line 190: Line 186:
  
  
 
 
 
 
 
 
</div>
 
 
<div id="CHydrogenase">
 
<div id="CHydrogenase">
<h3>Hydrogenese gene clusters</h3>
+
<h3>Hydrogenese gene clusters</h3><p></p>
 
  <h3>B. Finally, high-activity hydrogenase is necessary for our system. To achieve efficient enzymatic activities, we codon-optimized and constructed the whole hydrogenase gene clusters (from Clostridium Acetobutylicum) by leveraging the multi-expression Acembl System.  Please refer to <b><a href="https://2016.igem.org/Team:ShanghaitechChina/Hydrogen">Hydrogenase Session</b></a> for more details. </h3>  <p></p>
 
  <h3>B. Finally, high-activity hydrogenase is necessary for our system. To achieve efficient enzymatic activities, we codon-optimized and constructed the whole hydrogenase gene clusters (from Clostridium Acetobutylicum) by leveraging the multi-expression Acembl System.  Please refer to <b><a href="https://2016.igem.org/Team:ShanghaitechChina/Hydrogen">Hydrogenase Session</b></a> for more details. </h3>  <p></p>
  

Revision as of 08:48, 19 October 2016

igem2016:ShanghaiTech