Difference between revisions of "Team:ShanghaitechChina/Demonstrate"

m
Line 45: Line 45:
 
We aimed to design a biofilm-interfaced artificial hydrogen-producing system, Solar Hunter, that harnesses the energy of sun light. Biofilm-anchored nanorods can efficiently convert photons to electrons, which seamlessly tap into the electron chain of engineered strain carrying FeFe hydrogenase gene cluster, thereby achieving high-efficiency hydrogen production. It is noteworthy that our system facilitates the recycling of the expensive nanorods as the biofilms were grown on easy-separation micro-beads to anchored NRs.  
 
We aimed to design a biofilm-interfaced artificial hydrogen-producing system, Solar Hunter, that harnesses the energy of sun light. Biofilm-anchored nanorods can efficiently convert photons to electrons, which seamlessly tap into the electron chain of engineered strain carrying FeFe hydrogenase gene cluster, thereby achieving high-efficiency hydrogen production. It is noteworthy that our system facilitates the recycling of the expensive nanorods as the biofilms were grown on easy-separation micro-beads to anchored NRs.  
 
<p></p>
 
<p></p>
The demonstration starts from the hydrogen production assay of the system made of all the components, biofilm anchored CdS on microspheres and the bacteria suspension expressing FeFe hydrogenase. Notably, our hydrogen production has shown great stability compared to some precursors using hydrogenase. This section concerns only about the big picture hydrogen production, for the thorough tour of hydrogen production assays we did, please refer to Integrative Bio-hydrogen System (https://2016.igem.org/Team:ShanghaitechChina/IBS). <p></p>
+
The demonstration starts from the hydrogen production assay of the system made of all the components, biofilm anchored CdS on microspheres and the strain expressing FeFe hydrogenase. Notably, our hydrogen production has shown great efficiency compared to some precursors using hydrogenase. This section demonstrates the hydrogen production with biofilm beads, for the thorough tour of hydrogen production assays we did, please refer to Integrative Bio-hydrogen System (https://2016.igem.org/Team:ShanghaitechChina/IBS). <p></p>
 
     </div></div>
 
     </div></div>
 
       </div>
 
       </div>
Line 134: Line 134:
 
     <div class="col-lg-12" >
 
     <div class="col-lg-12" >
 
         <h1 align="center"  >Conclusion</h1>
 
         <h1 align="center"  >Conclusion</h1>
In conclusion, E. Coli strains expressing biofilm on microspheres to anchor nanorods and strains expressing hydrogenase work great together for producing hydrogen. Although the system is not as efficient as the one with nanorods flowing freely due to some possible reasons as the size of microsphere, the system still achieved a fairly good hydrogen production efficiency compared to the similar precursor reported this year. Since the use of microsphere allowed easy recycling of the expensive nanomaterials, we therefore propose this model as our final model, although further optimization of the system is still under way, including deciding on the optimized material and size the microsphere for biofilm growth. Meanwhile, our SpyCatcher on the CsgA allows the binding of other proteins that may significantly improve our system. This will lead to our future work. Stay tuned, or you may want to join us in this project as well: Contact us: zhongchao@shanghaitech.edu.cn Investor are also welcome.<p></p>
+
In conclusion, E. Coli strains expressing biofilm on microspheres to anchor nanorods and strains expressing hydrogenase work great together for producing hydrogen. Although the system is not as efficient as the one with nanorods flowing freely due to some possible reasons as the size of microsphere, the system still achieved a fairly good hydrogen production rate compared to the similar precursor reported this year. Since the use of microsphere allowed easy recycling of the expensive nanomaterials, we therefore propose this model as our final model, although further optimization of the system is still under way, including deciding on the optimized material and size the microsphere for biofilm growth. Meanwhile, our SpyCatcher on the CsgA allows the binding of other proteins that may significantly improve our system. This will lead to our future work. Stay tuned, or you may want to join us in this project as well: Contact us: zhongchao@shanghaitech.edu.cn Investor are also welcome.<p></p>
  
 
</div></div></div>
 
</div></div></div>

Revision as of 17:40, 19 October 2016

igem2016:ShanghaiTech