Difference between revisions of "Team:ShanghaitechChina/Demonstrate"

Line 98: Line 98:
 
<b> > Calculating the hydrogen evolution rate of our integrated system.</b><p></p>
 
<b> > Calculating the hydrogen evolution rate of our integrated system.</b><p></p>
  
We are particularly interested in learning what our efficiency is compared to one study reported this year. See reference 1. In calculating the efficiency, we chose the data from the first hydrogen production period. We converted the data in mV into umol/L. The standard curve is provided by the lab who supervised our assay apparatus.  
+
We calculated the hydrogen production efficiency using the standard curve. Specifically, we chose the data from the first hydrogen production period. We converted the data in mV into umol/L. We compared the efficiency of our system with previous work ( See reference 1.) .
  
 
  <center><img src="https://static.igem.org/mediawiki/2016/3/30/T--ShanghaitechChina--biaozhuanqingqibiaodingquxian.png"></center>
 
  <center><img src="https://static.igem.org/mediawiki/2016/3/30/T--ShanghaitechChina--biaozhuanqingqibiaodingquxian.png"></center>
 
         <p style="text-align:center"><b>Figure Standard</b> Relationship between voltage data and concentration.</p>
 
         <p style="text-align:center"><b>Figure Standard</b> Relationship between voltage data and concentration.</p>
  
Thus, we obtain the rate of hydrogen evolution: the tip of the first period is 7.061 mV at 500s. This corresponds to 2.179 (0.3086*7.061) umol/L at 500s. Thus the rate is 0.0126 (2.179/500*3mL*1000) umol/s, for 0.1g E. Coli. In comparison with the rate from reference 1, 0.0086mol umol/s. This 46% increase in the efficiency shows that our system not only works, but is also a progress for the study of artificial hydrogen production system.<p></p>
+
Following the method above , we obtain the rate of hydrogen evolution: the tip of the first period is 7.061 mV at 500s. This corresponds to 2.179 (0.3086*7.061) umol/L at 500s. Thus the rate is 0.0126 (2.179/500*3mL*1000) umol/s, for 0.1g E. Coli. In comparison with the rate from reference 1, 0.0086mol umol/s. This 46% increase in the efficiency shows that our system not only functions, but is also a big improvement compared with a artificial hydrogen production system reported before .<p></p>
  
 
</div></div></div>
 
</div></div></div>

Revision as of 19:55, 19 October 2016

igem2016:ShanghaiTech