Difference between revisions of "Team:ShanghaitechChina/Hydrogen"

 
Line 61: Line 61:
 
     <div class="col-lg-12">
 
     <div class="col-lg-12">
 
   <h1 align="center">Connection to the Project</h1>
 
   <h1 align="center">Connection to the Project</h1>
 +
</div><div class="col-lg-3"><img src="https://static.igem.org/mediawiki/2016/7/76/T--ShanghaitechChina--member--qlc--hydrogenase.jpg" style="width:100%"></div><divclass="col-lg-9">
 
In our sun-powered biofilm-interfaced hydrogen-producing system, <strong>hydrogenase  harnessed in engineered <i>E.coli</i> are conceived to efficiently catalyze proton reduction upon receiving electrons originally donated by semiconductor nanomaterials</strong>. Electron transportation from semiconductors to hydrogenase could be bridged and facilitated by the use of mediators, methyl viologen. To achieve efficient enzymatic activities, we codon-optimized and constructed the whole hydrogenase gene clusters (from <i>Clostridium acetobutylicum</i>) by leveraging the multi-expression Acembl System. <p></p>
 
In our sun-powered biofilm-interfaced hydrogen-producing system, <strong>hydrogenase  harnessed in engineered <i>E.coli</i> are conceived to efficiently catalyze proton reduction upon receiving electrons originally donated by semiconductor nanomaterials</strong>. Electron transportation from semiconductors to hydrogenase could be bridged and facilitated by the use of mediators, methyl viologen. To achieve efficient enzymatic activities, we codon-optimized and constructed the whole hydrogenase gene clusters (from <i>Clostridium acetobutylicum</i>) by leveraging the multi-expression Acembl System. <p></p>
 
</div></div></div>
 
</div></div></div>

Latest revision as of 22:22, 19 October 2016

igem2016:ShanghaiTech