Team:ShanghaitechChina/Description

igem2016:ShanghaiTech

The combination of artificial and biological photosynthesis has shown great efficiency in recent work with M. thermoacetica-CdS hybrid system to produce acetic acid (acetyl-coenzyme A) [1]. Our project is inspired by this solar-to-chemical synthesis and we call our project as Solar Hunter. Rather than using biologically precipitated CdS nanoparticals, Hunter will exploit the proteins on the biofilm to bind CdS or other compatible quantum dots. The protein that came into our sight is pili, the microbial nanowire[2]. The wire can be expressed in genetically manipulated strains as long wires with binding sites for quantum dots. With the more space made for more quantum dots, we expect a boost in the energy of light harvested by our Solar Hunter. In addition, Hunter will include a pathway for leucine synthesis from acetate (acetyl-coenzyme A)[3], since leucine is of higher value.

The solar source in the solar-chemical system is, in its essence, energy with electrons. In an attempt to apply our quantum dots-pili hybrid to a wider extent, we decide to try out this model on another amazing archaea, Methanosaeta barundinacea, which is likely to have a pathway to simply use carbon dioxide, electrons and protons for the biosynthesis of methane[4].

Our Hunter family member can be just a protein as well. Nitrogenase complex is the central enzyme in the natural nitrogen-fixing process. Previous researches have demonstrated the viability of the using semiconductor-protein hybrid to harvest electrons from sunlight as a substitute for the Fe protein in the complex where electrons are generated from ATP. [5] Aiming to construct a well-established nitrogen fixation platform, we will explore the possibility of an increase in the efficiency of the system using Hunter’s pili, mediated by Spytag and Spycatcher system.

These three parallel systems should altogether build a powerful Hunter family to bring the endless energy from the sun for the good of mankind.

[1] 10.1126/science.aad3317 [2] 10.1016/j.bioelechem.2010.07.005 [3] 10.1128/JB.01841-07 [4] 10.1039/Energy Environ.Sci.c3ee42189a [5] 10.1126/science.aaf2091

★ ALERT!

This page is used by the judges to evaluate your team for the improve a previous part or project gold medal criterion.

Delete this box in order to be evaluated for this medal. See more information at Instructions for Pages for awards.

Tell us about your project, describe what moves you and why this is something important for your team.

What should this page contain?
  • A clear and concise description of your project.
  • A detailed explanation of why your team chose to work on this particular project.
  • References and sources to document your research.
  • Use illustrations and other visual resources to explain your project.
Advice on writing your Project Description

We encourage you to put up a lot of information and content on your wiki, but we also encourage you to include summaries as much as possible. If you think of the sections in your project description as the sections in a publication, you should try to be consist, accurate and unambiguous in your achievements.

Judges like to read your wiki and know exactly what you have achieved. This is how you should think about these sections; from the point of view of the judge evaluating you at the end of the year.

References

iGEM teams are encouraged to record references you use during the course of your research. They should be posted somewhere on your wiki so that judges and other visitors can see how you thought about your project and what works inspired you.

Inspiration

See how other teams have described and presented their projects: