Line 3: | Line 3: | ||
<html> | <html> | ||
− | <h1>Introduction<h1> | + | <h1>Introduction</h1> |
<p>Antibiotic resistance is a renowned and pressing global health concern. In more recent times, there has been stagnation in discovering new classes of antibiotics, particularly for gram-negative bacteria. Throughout the mid-1900s, scientists were rapidly discovering the current major classes of antibiotics using the Waksman platform, which entailed systematically screening soil and fungal microbes for growth inhibition. However, the recurring problem of rediscovery and failure of subsequent high-throughput biochemical assays led many pharmaceutical companies to abandon their antibiotic development programs. Current antibiotics are generally broad-spectrum, acting against symbiotic gut flora in addition to pathogenic invaders. Therefore, specificity has recently become a target in modern antibiotic development in order to bypass challenges of both rediscovery and indiscriminate killing.<br><br></p> | <p>Antibiotic resistance is a renowned and pressing global health concern. In more recent times, there has been stagnation in discovering new classes of antibiotics, particularly for gram-negative bacteria. Throughout the mid-1900s, scientists were rapidly discovering the current major classes of antibiotics using the Waksman platform, which entailed systematically screening soil and fungal microbes for growth inhibition. However, the recurring problem of rediscovery and failure of subsequent high-throughput biochemical assays led many pharmaceutical companies to abandon their antibiotic development programs. Current antibiotics are generally broad-spectrum, acting against symbiotic gut flora in addition to pathogenic invaders. Therefore, specificity has recently become a target in modern antibiotic development in order to bypass challenges of both rediscovery and indiscriminate killing.<br><br></p> |
Revision as of 06:09, 14 October 2016
Introduction
Antibiotic resistance is a renowned and pressing global health concern. In more recent times, there has been stagnation in discovering new classes of antibiotics, particularly for gram-negative bacteria. Throughout the mid-1900s, scientists were rapidly discovering the current major classes of antibiotics using the Waksman platform, which entailed systematically screening soil and fungal microbes for growth inhibition. However, the recurring problem of rediscovery and failure of subsequent high-throughput biochemical assays led many pharmaceutical companies to abandon their antibiotic development programs. Current antibiotics are generally broad-spectrum, acting against symbiotic gut flora in addition to pathogenic invaders. Therefore, specificity has recently become a target in modern antibiotic development in order to bypass challenges of both rediscovery and indiscriminate killing.
The core of antibiotic development lies in targeting a molecule or pathway essential for bacterial survival. Bacteria themselves have already developed several mechanisms to both communicate and compete with other bacterial strains occupying similar niches, which can be exploited for the creation of new antibiotic drugs. While some systems rely on secreted signaling molecules, direct cell-to-cell contact is also used to mediate intercellular interactions. Contact-dependent growth inhibition (CDI) is one such system that allows CDI+ bacterial strains to outcompete closely related CDI− siblings by synthesizing and translocating a toxin through the membrane of strains expressing the appropriate receptor. The CDI system is common in many strains of pathogenic gram-negative bacteria, such as Yersinia pseudotuberculosis and uropathogenic strains of Escherichia coli, making it a potentially suitable target for future antibiotics.
This type of growth inhibition was first seen in E. coli strain EC93, in which toxin delivery is mediated by the CdiA/CdiB two-partner secretion system and the outer membrane protein BamA, which is a conserved receptor among all strains of E. coli. EC93 is protected from its own toxin, located at the C-terminal region of CdiA (CdiA-CT), by the expression of a CdiI immunity protein that interacts directly with the toxin to neutralize its pore-forming capabilities. The CdiBAI cluster is common throughout most CDI+ strains, significantly varying only in CdiA-CT and CdiI sequences.