Difference between revisions of "Team:Valencia UPV/Proof"

Line 4: Line 4:
 
<body>
 
<body>
  
    <section class="page-header dark" style="margin-top: -2px">
+
<style>
        <div class="container">
+
.page-header{
            <h1>gRNA Testing System</h1>
+
background-position-y:-27em;
        </div>
+
}
 +
@media screen and (max-width: 1370px){
 +
.page-header{
 +
background-position-y:-15em;
 +
}
 +
}
 +
</style>
 +
  <section class="page-header page-header-lg parallax parallax-3" style="background-image:url('https://static.igem.org/mediawiki/2016/2/23/T--Valencia_UPV--notebookTitleBack.png');">
 +
<div class="overlay dark-5"><!-- dark overlay [1 to 9 opacity] --></div>
 +
<div class="container">
 +
<h1>Split Cas9</h1>
 +
</div>
 
     </section>
 
     </section>
    <section>
 
        <div class="container">
 
  
            <div class="row">
 
 
                <!-- LEFT -->
 
                <div class="col-md-2 col-sm-3">
 
 
                    <!-- side navigation -->
 
                    <div class="side-nav margin-bottom-60 margin-top-30">
 
 
                        <div class="side-nav-head">
 
                            <button class="fa fa-bars"></button>
 
                            <h4>Index</h4>
 
                        </div>
 
                        <ul class="list-group list-group-bordered list-group-noicon uppercase">
 
                            <li class="list-group-item"><a href="#"><span class="size-11 text-muted pull-right"></span> First Stuff</a></li>
 
                        </ul>
 
                        <!-- /side navigation -->
 
 
 
                    </div>
 
                </div>
 
                <!-- RIGHT -->
 
                <div class="col-md-10 col-sm-9">
 
                    <!-- POST ITEM -->
 
                    <div class="blog-post-item">
 
 
                        <!-- IMAGE -->
 
                        <figure class="margin-bottom-20">
 
                            <img class="img-responsive" src="assets/images/demo/content_slider/10-min.jpg" alt="">
 
                        </figure>
 
 
                        <p>
 
 
 
                            <h3>gRNA Testing System</h3>
 
 
                            <p>
 
                                <h3>Abstract</h3>
 
                            </p>
 
 
                            <p>We have designed a modular gRNA testing system in order to check if the gRNA provided by the
 
                                Data Processing Software works as expected on the plant variety to improve. This system works
 
                                as a <b>genetic switch</b> that remains OFF if the gRNA does not work, and turns ON when
 
                                the Cas9 does a double stranded break in the target. The device performance is based on the
 
                                fact that the <b>luciferase reporter gene</b> is out of its reading frame. When CRISPR/Cas9
 
                                system works as expected, meaning that the <b>gRNA is well designed</b>, it will introduce
 
                                indels in our device and the luciferase will be placed on its correct reading frame. Therefore,
 
                                we will be able to detect bioluminescence with a luciferase assay. </p>
 
                            <br>
 
 
 
                            <p><b><u>gRNA Testing System</b></u>
 
                            </p>
 
                            <br>
 
                            <p>gRNA is a key element in genome editing with CRISPR/Cas9 system, since it leads endonuclease
 
                                Cas9 where the modification must be produced. That means gRNA must work properly in the plant
 
                                variety that we want to improve. </p>
 
                            <br>
 
 
 
                            <p>The plant breeder could use the gRNA provided by our software directly in his plant. However,
 
                                lots of plant species take a long time to grow. For example, orange trees need at least 1-2
 
                                years to exceed the first growth stage, and 3-4 years to produce the first fruits. If the
 
                                gRNA didn&rsquo;t work properly, the plant breeder would had lost a valuable time waiting
 
                                to see a phenotypic improvement on his plant. It would take a long time just to know if the
 
                                gRNA has worked or not. Due to that, it&rsquo;s necessary to previously check the gRNA proper
 
                                functioning.</p>
 
                            <br>
 
 
 
                            <p><b>Why would not our gRNA work?</b></p>
 
                            <br>
 
                            <p>Our open-source database includes genes of interest, which can be selected by plant breeders
 
                                according to their needs. It also directly provides the optimal gRNA which, afterwards, must
 
                                be ordered to synthesize. The gRNA is obtained from gene consensus sequences acquired from
 
                                big databases such as NCBI or Sol Genomic. However, the consensus sequence may match or not
 
                                with the specific variety to improve. Insertions and deletions - Indels - and Single Nucleotide
 
                                Polymorphisms - SNPs - occur spontaneously and randomly in the genome of different plant
 
                                varieties. That means the gRNA obtained by our data processing software could not work optimally
 
                                on the desired variety. This makes even more necessary to test the gRNA before using it in
 
                                the specific variety. Furthermore, even if the gRNA matches perfectly with the target sequence,
 
                                mutagenesis may not occur - or be less efficient - due to gRNA secondary structure problems.</p>
 
                            <br>
 
 
 
                            <p><b><u>gRNA testing methods</b></u>
 
                            </p>
 
                            <br>
 
                            <p>The current methods used to test the efficiency of CRISPR/Cas9 -and therefore that can be used
 
                                to test the gRNA- are digestion with restriction enzymes or digestion with T7 endonuclease
 
                                and subsequent sequencing. However, these methods are not suitable if we want to make accessible
 
                                and easy the testing of the gRNA. </p>
 
                            <br>
 
 
 
 
 
                            <ul>
 
                                <li><b>Digestion with restriction enzymes</b>: when choosing the target within the gene, it is
 
                                    mandatory to choose a target including a restriction site where the Cas9 will make the
 
                                    DSB. Therefore, in order to check if the Cas9 produced the mutation, a digestion is performed
 
                                    with the restriction enzyme, and an electrophoresis gel is carried out. If the Cas9 cuts,
 
                                    the restriction site will be lost and the enzyme will not cut. Therefore, in the electrophoresis
 
                                    gel, a band with higher molecular weight should be observed. If mutation did not occur,
 
                                    two bands should be observed, since the enzyme can recognize the site and cut. </li>
 
 
                                <ul>
 
                                    <li><b>Problem</b>: the range of possible targets is reduced, because they must contain a
 
                                        restriction site exactly in the place where the Cas9 cuts. Additionally, when you
 
                                        find a target with a restriction site you might not have the needed enzyme. Buying
 
                                        it may imply a high cost, not affordable for everyone. </li>
 
                                    <br>
 
                                </ul>
 
                            </ul>
 
 
                            <ul>
 
                                <li><b>Digestion with T7 endonuclease</b>: this strategy is similar to the restriction enzymes
 
                                    one, yet it uses the T7 endonuclease. This endonuclease cuts where it finds heterodimers.
 
                                    When Cas9 cuts, due to the non-homologous end joining DNA repair mechanism - NHEJ -,
 
                                    plant cells introduce indels. After a PCR amplification of the region, heterodimers can
 
                                    be obtained from a denaturation and reannealing step. When they are annealed, they might
 
                                    bind with a strand which is not exactly complementary, producing heterodimers that T7
 
                                    can cut. Therefore, in an electrophoresis gel, a high molecular weight band will be observed
 
                                    if there is not a cut, while, two shorter bands will appear if T7 endonuclease cuts and
 
                                    so, Cas9 is well working.</li>
 
 
                                <ul>
 
                                    <li><b>Problem</b>: the T7 endonuclease is outrageously expensive. Buying it may imply even
 
                                        a higher cost, not affordable for everyone. </li>
 
 
                                </ul>
 
                            </ul>
 
 
 
                            <br>
 
                            <p>In order to provide an efficient solution to the drawbacks explained above, we have engineered
 
                                a gRNA Testing System. In this strategy, we use <i>Nicotiana benthamiana</i> due to its fast
 
                                growth and all the benefits provided by a model plant. Our methodology is based in the GoldenBraid
 
                                Assembly System, that allows us to get a modular and standard system, two of the mainstays
 
                                of Synthetic Biology field. </p>
 
                            <br>
 
 
 
                            <p><b><u>Our device</b></u>
 
                            </p>
 
                            <br>
 
                            <p>The fragment of genome that we are going to target in our plant is inserted in the Testing System
 
                                following the concept of modularity. Based on <i><i>Agrobacterium</i> tumefaciens</i> infection
 
                                and using a reporter gene in our device, we will be able to know how efficient the provided/designed
 
                                gRNA is. </p>
 
                            <br>
 
                            <p>First of all, plant breeders have to carry out a genomic DNA extraction of the plant they want
 
                                to modify. Next, they need to amplify the region they are going to target. The targets needed
 
                                to this amplification are provided by our Data Processing Software. The amplified target
 
                                sequence is introduced in <i>N. benthamiana</i> as part of the device with the luciferase
 
                                reporter. </p>
 
                            <br>
 
                            <img class="img-responsive" style="float:left;width:55%;" src="https://static.igem.org/mediawiki/2016/4/49/Gts_target_1_upv.png">
 
 
 
                            <p>This device is introduced in the plant along with the corresponding gRNA and Cas9 construction.
 
                                If the gRNA works on the desired variety, we will be able to detect it easily with a luciferase
 
                                assay.</p>
 
                            <br>
 
                            <img class="img-responsive" style="float:left;width:55%;" src="https://static.igem.org/mediawiki/2016/a/a9/Gts_target_2_upv.png">
 
                            <p>Our system is designed to allow the detection of luminescence. Thus, a luciferase assay is used
 
                                to study gene expression rates, since it is fast and the analysis of each sample only requires
 
                                a few minutes. Moreover, it is extremely sensitive and the results are very accurate, allowing
 
                                us to obtain quantitative results. Originally the system is OFF since luciferase genetic
 
                                sequence is not in the correct frame. <b>When Cas9 cuts,  indels  appear, system turns ON, so luciferase gene is in the correct frame and it will be correctly translated.</b>                                In that case, the plant breeder could check the genome editing in a simple way. Cells are
 
                                assayed for the presence of the reporter by directly measuring the enzymatic activity of
 
                                the reporter protein on luciferin substrate. </p>
 
                            <br>
 
                            <br>
 
 
 
                            <p><b><u>Parts of the device</b></u>
 
                            </p>
 
                            <br>
 
                            <p>P35s : 5&rsquo; region : TARGET : Linker (+2) : LUC : Tnos</p>
 
                            <br>
 
                            <br>
 
 
                            <ul>
 
                                <li><b>P35s</b>: It is a strong constitutive promoter derived from cauliflower mosaic virus (CaMV).
 
                                    It is widely used in plants to improve the level of the expression of foreign genes effectively
 
                                    in all tissues. </li>
 
                                <br>
 
                            </ul>
 
 
                            <ul>
 
                                <li><b>5&rsquo; region</b>: 5&rsquo; region from the <i>N. benthamiana</i> polyubiquitin sequence
 
                                    (Accession number: Nbv5.1tr6241949) is used due to its high expression rate in every
 
                                    plant tissue. It can help our gene to express itself and ensures that the construction
 
                                    is expressed. It contains BsmbI and BsaI recognition sites with AATG in 3&rsquo; as overhang
 
                                    that allows us to ligate with the amplified target.</li>
 
                                <br>
 
                            </ul>
 
 
                            <ul>
 
                                <li><b>Target</b>: Plant breeders will obtain the selected gene from their original plant by
 
                                    PCR amplification with the primers provided by our Data Processing Software. These primers
 
                                    are designed in order to obtain amplicons with the overhangs needed to insert the target
 
                                    in our device, corresponding to GoldenBraid grammar (prefix: AATG, suffix: TTCG). It&rsquo;s
 
                                    mandatory to make sure that this region doesn&rsquo;t contain any stop codon in frame
 
                                    +1, but neither in frame +2, so when an indel happens the reading frame will not be disrupted.
 
                                    The software finds the optimal target with its corresponding gRNA.</li>
 
                                <br>
 
                            </ul>
 
 
                            <ul>
 
                                <li><b>Linker SAGTI (Ser-Ala-Gly-Thr-Ile)</b>: it is a flexible peptide linker between the target
 
                                    and the luciferase, so it allows the luciferase to acquire the correct structure, avoiding
 
                                    interaction with the target. Thus, luciferase assay will be carried out in a successfully
 
                                    way. As it can be seen in the figure 1, the first part of the device is in ORF +1 whereas
 
                                    the luciferase is in ORF +2. The device is designed so that there is an extra nucleotide
 
                                    before the linker sequence to change the reading frame. If this nucleotide were after
 
                                    the linker sequence, when Cas9 cut, the reading frame of the linker would change, and
 
                                    the amino acids translated would not be the correct ones. Figure 1 shows how it will
 
                                    be translated after the indels.</li>
 
                                <br>
 
                            </ul>
 
                            <img class="img-responsive" src="https://static.igem.org/mediawiki/2016/4/47/Gts_target_3_upv.png">
 
 
 
 
                            <p>Figure 1. Device after endonuclease Cas9 cut and indels production. a) The extra nucleotide is
 
                                located before the linker, so when indels change the frame, the linker and the luciferase
 
                                are in the correct ORF. b) The extra nucleotide is located after the linker. Thus linker&rsquo;s
 
                                frame will be different from luciferase&rsquo;s one after indel occurs.</p>
 
                            <br>
 
                            <p>Luciferase: It is widely used as a reporter enzyme. At the beginning, luciferase gene is out
 
                                of the reading frame due to the presence of an extra nucleotide. After CRISPR/Cas9 acts indels
 
                                occur. These insertions and deletions of nucleotides produce a frameshift and change luciferase&rsquo;s
 
                                frame in the right frame +1, so it will be correctly translated. In the experimental design,
 
                                the first methionine has been removed just to prevent the unintended translation of the luciferase.
 
                                Therefore appearance of false positives will be avoided. </p>
 
                            <br>
 
 
 
                            <ul>
 
                                <li><b>Tnos</b>: Nopaline synthase terminator of the nopaline synthase gene of <i><i>Agrobacterium</i>                                    tumefaciens</i>. It is used for gene transfection. </li>
 
                                <br>
 
                            </ul>
 
 
                            <p>The plant breeder will be provided with a pUPD2 vector with P35s:5&rsquo;region, another pUPD2
 
                                with linker:luciferase, and a pUPD2 ready to insert the target directly obtained from their
 
                                plant variety. Using GoldenBraid assembly, the breeder will insert the target within the
 
                                pUPD2. Afterwards, in a GoldenGate ligation reaction, all the parts of our device can be
 
                                assembled, obtaining the complete gRNA testing system construction. Afterwards <i>A. tumefaciens</i>                                will be transformed with the obtained plasmid and it will be used to agroinfiltrate <i>N. benthamiana</i>                                leaves. Four days post infiltration, the breeder will be able to perform the luciferase assay.
 
                                </p>
 
                            <br>
 
 
 
 
 
                            <p><b><u>Bibliography</b></u>
 
                            </p>
 
                            <br>
 
 
 
                            <ul>
 
                                <li>Biolabs, N.(2016).Measuring Targeting Efficiency with the T7 Endonuclease I Assay | NEB.
 
                                    (online) Neb.com. Available at: https://www.neb.com/applications/cloning-and-synthetic-biology/genome-editing/measuring-targeting-efficiency-with-the-t7-endonuclease-i-assay
 
                                    (Accessed 27 Jul. 2016).</li>
 
 
                            </ul>
 
 
                            <ul>
 
                                <li>Pauli, S., Rothnie, H., Chen, G., He, X. and Hohn, T. (2004). The Cauliflower Mosaic Virus
 
                                    35S Promoter Extends into the Transcribed Region. Journal of Virology, 78(22), pp.12120-12128.</li>
 
 
                            </ul>
 
 
                            <ul>
 
                                <li>Guilley, H., Dudley, R., Jonard, G., Balàzs, E. and Richards, K. (1982). Transcription of
 
                                    cauliflower mosaic virus DNA: detection of promoter sequences, and characterization of
 
                                    transcripts. Cell, 30(3), pp.763-773.</li>
 
 
                            </ul>
 
 
                            <ul>
 
                                <li>Sefapps02.qut.edu.au. (2016). Benthamiana Atlas. (online) Available at: http://sefapps02.qut.edu.au/atlas/tREXXX2new.php?TrID=Nbv5.1tr6241949
 
                                    (Accessed 27 Jul. 2016).</li>
 
 
                            </ul>
 
 
                            <ul>
 
                                <li>Chen, X., Zaro, J. and Shen, W. (2013). Fusion protein linkers: Property, design and functionality.
 
                                    Advanced Drug Delivery Reviews, 65(10), pp.1357-1369.</li>
 
 
                            </ul>
 
 
                            <ul>
 
                                <li>Holden, M., Levine, M., Scholdberg, T., Haynes, R. and Jenkins, G. (2009). The use of 35S
 
                                    and Tnos expression elements in the measurement of genetically engineered plant materials.
 
                                    Anal Bioanal Chem, 396(6), pp.2175-2187.</li>
 
 
 
 
                        </p>
 
 
                    </div>
 
                    <!-- /POST ITEM -->
 
                </div>
 
            </div>
 
        </div>
 
    </section>
 
 
</body>
 
</body>
 
 
</html>
 
</html>
 
{{:Team:Valencia_UPV/Templates:footerUPV}}
 
{{:Team:Valencia_UPV/Templates:footerUPV}}

Revision as of 17:18, 18 October 2016

Sponsors