Difference between revisions of "Team:Cambridge-JIC/Motivation"

 
(49 intermediate revisions by the same user not shown)
Line 12: Line 12:
 
.darkBlue:link
 
.darkBlue:link
 
{
 
{
         color:#000;
+
         color:#B7E2F0;
 
         text-decoration:none;
 
         text-decoration:none;
 
      
 
      
Line 19: Line 19:
 
.darkBlue:hover
 
.darkBlue:hover
 
{
 
{
         color:#B7E2F0;
+
         color:#fff;
 
         text-decoration:none;
 
         text-decoration:none;
 
}
 
}
  
 
.darkWhite, .darkBlue{
 
.darkWhite, .darkBlue{
 +
        color: #B7E2F0
 
         font-weight: bold;
 
         font-weight: bold;
         font-size: 150%;
+
         font-size: 100%;
 
}
 
}
  
 
.darkBlue:active
 
.darkBlue:active
 
{
 
{
         color:#B7E2F0;
+
         color:#fff;
 
         text-decoration:none;
 
         text-decoration:none;
 
}
 
}
Line 42: Line 43:
 
         text-align:center:
 
         text-align:center:
 
}
 
}
 +
 +
hr
 +
{
 +
        height: 3px;
 +
        color: #B7E2F0;
 +
        background-color: #B7E2F0;
 +
}
 +
 
</style>
 
</style>
  
<section style="background-color:#fff; text-align: center; padding: 10% 0%">
+
<section style="background-color:#fff; text-align: center; padding: 12% 0%">
 
     <center><h1 style="font-family:'Montserrat'; line-height:1.295em">OUR MOTIVATION...</h1></center>
 
     <center><h1 style="font-family:'Montserrat'; line-height:1.295em">OUR MOTIVATION...</h1></center>
 
     <div></div>
 
     <div></div>
 
</section>
 
</section>
  
<section style="background-color:#B7E2F0; text-align: center">
+
<section style="background-color:#3d3d3d; text-align: center; padding: 15% 0%">
     <div class="container" style="padding:2% 0%">
+
     <div class="container" style="color:#fff">
     <p style="font-family:'Roboto Condensed'; font-size:150%">This then led us onto the subject of our own project this year: chloroplast engineering in Chlamydomonas reinhardtii. We captivated the students’ imagination by discussing the potential of this technology, with applications in areas such as healthcare, energy production and biomaterials, but also explained the main bottlenecks currently hindering the field. This included the issue of democratising the technology for laboratories around the world to have access to, and how our low cost hardware is tackling this. The students particularly engaged with this part of our project, asking many questions about the process of designing and building such hardware in our Q&A session after the talk. It was particularly promising to see how the students understood the interdisciplinary nature of our project and the field of synthetic biology, when they had held the previous impression it was an area only suited for academics in lab coats all day.</p>
+
    <p class="darkBlue" style="font-family:Open Sans; font-size:180%; text-align:center">I. Microalgal chloroplasts as an alternative expression system</p>
     <figure>
+
    </div>
        <img src="https://static.igem.org/mediawiki/2016/c/c7/T--Cambridge-JIC--engagement_2.png" style="display:block; margin-left:auto; margin-right:auto; max-width:100%; max-height:100%; padding:2% 0%;">
+
</section>
        <center><figcaption></figcaption></center>
+
    </figure>
+
<section style="background-color:#fff; text-align: center; padding: 10% 0%">
 +
    <div class="container" style="color:#000">
 +
    <div class="col-md-3">
 +
    <hr>
 +
     <p style="font-family:Open Sans; font-size:150%;">Chloroplasts hold a massive potential as an alternative protein expression system, due to their outstanding expression yields, diversity of post-translational modifications and auto/mixotrophic lifestyles of plants and microalgae.</p>
 +
     <hr>
 +
    </div>
 +
    <div class="col-md-9">
 +
    <img style="max-width:100%; max-height:100%; margin-right:0px" src="https://static.igem.org/mediawiki/2016/8/8c/T--Cambridge-JIC--motivation--table1.jpg">
 +
    </div>
 +
    </div>
 +
</section>
  
     <p style="font-family:'Roboto Condensed'; font-size:150%">Explaining how we had achieved all of this as only 10 undergraduates, with one of our team having been in the place of the sixth form students just two years ago, really engaged with our audience. It was particularly rewarding to have a queue of students at the end of the talk asking for advice on choosing university courses which would allow them to get involved in an iGEM project in the future.</p>
+
 
     <p style="font-family:'Roboto Condensed'; font-size:150%">We aimed to promote the field of chloroplast engineering through this event, and walked away feeling confident that the issue of lack of motivation for research into the field will be solved by these iGEMers and synthetic biologists of the future inspired from our project.</p>
+
<section style="background-color:#3d3d3d; text-align: center; padding: 12% 0%">
 +
    <div class="container" style="color:#fff">
 +
 
 +
    <div class="col-md-4">
 +
     <p style="font-family:Open Sans; font-size:150%; text-align:center;">Various proteins have already been successfully expressed in chloroplasts, including:</p>
 +
    <ul style="font-size:150%; display:block; float:left; text-align:left">
 +
      <li>monoclonal antibodies
 +
      <li>antigens
 +
      <li>anti-toxins
 +
      <li>growth factors
 +
    <ul>
 +
    </div>
 +
    <div class="col-md-4">
 +
    </div>
 +
    <div class="col-md-4" style="margin-right: 0px">
 +
    <hr>
 +
     <p style="font-family:Arvo; font-size: 150%; text-align:right">Transgene expression in microalgae can total up to 30-50% of a cell’s dry biomass, as unlike in higher plants and mammals, metabolic energy in microalgae is not directed towards maintaining complex differentiated structures.</p>
 +
    <hr>
 +
    </div>
 
     </div>
 
     </div>
 
</section>
 
</section>
 
+
 
 +
<section style="background-color:#fff; text-align: center; padding: 15% 0%">
 +
    <div class="container" style="color:#000">
 +
    <p style="font-family:Open Sans; font-size:180%; text-align:center">II. Microalgae chloroplasts as a model for higher plants</p>
 +
    </div>
 +
</section>
 +
 
 +
<section style="background-color:#3d3d3d; text-align: center; padding: 12% 0%">
 +
    <div class="container" style="color:#fff">
 +
 
 +
    <div class="col-md-4">
 +
    <p style="font-family:Open Sans; font-size:150%; text-align:center;">Research in C. reinhardtii chloroplasts can help achieve the following aims:</p>
 +
    <ul style="font-size:150%; display:block; float:left; text-align:left">
 +
      <li>increase yields of oils for biofuels
 +
      <li>elucidate photosynthetic machinery
 +
      <li>improve C fixation to combat the international food crisis
 +
    <ul>
 +
    </div>
 +
    <div class="col-md-4">
 +
    </div>
 +
    <div class="col-md-4" style="margin-right: 0px">
 +
    <hr>
 +
    <p style="font-family:Arvo; font-size: 150%; text-align:right">Due to extensive evolutionary conservation of the chloroplast genome, research in the chloroplasts of microalgae, such as Chlamydomonas reinhardtii, is likely to be applicable to studies of other plants. On the other hand, Chlamydomonas reinhardtii is much easier to grow and maintain than higher plants, such as Marchantia polymorpha. </p>
 +
    <hr>
 +
    </div>
 +
    </div>
 +
</section>
 +
 
 +
<section style="background-color:#fff; text-align: center; padding: 15% 0%">
 +
    <div class="container" style="color:#000">
 +
    <p class="darkBlue" style="font-family:Open Sans; font-size:180%; text-align:center">III. Bottlenecks of chloroplast engineering
 +
</p>
 +
    </div>
 +
</section>
 +
 
 +
 
 +
<section style="background-color:#3d3d3d; text-align: center; padding: 12% 0%">
 +
    <div class="container" style="color:#fff">
 +
 
 +
    <div class="col-md-3">
 +
    </div>
 +
    <div class="col-md-6">
 +
    <p style="font-family:Open Sans; font-size:150%; text-align:center;">Chloroplasts engineering is currently underexplored due to:</p>
 +
    <hr>
 +
    <ul style="font-size:150%; display:block; float:left; text-align:left">
 +
      <li>Time issues — it takes 2-3 months to achieve homoplasmy, as state where all chloroplast genome copies have been transformed and when experimental results can be obtained
 +
      <li>Experimental cost — chloroplasts can be reliably transformed almost exclusively by biolistic devices, and commercial biolistic devices are very expensive.
 +
      <li>Lack of modular chloroplast genetic parts available — research is more time-consuming and cumbersome.
 +
    <ul>
 +
    </div>
 +
    <div class="col-md-3" style="margin-right: 0px">
 +
    </div>
 +
    </div>
 +
</section>
 +
 
 +
<section style="background-color:#fff; text-align: center; padding: 15% 0%">
 +
    <div class="container" style="color:#000">
 +
    <p class="darkBlue" style="font-family:Open Sans; font-size:180%; text-align:center"> IV. Our solutions</p>
 +
    </div>
 +
</section> 
 +
 
 +
 
 +
<section style="background-color:#3d3d3d; text-align: center; padding: 12% 0%">
 +
    <div class="container" style="color:#fff">
 +
 
 +
    <div class="col-md-1">
 +
    </div>
 +
    <div class="col-md-10">
 +
    <p style="font-family:Open Sans; font-size:150%; text-align:center;">Our project aims to tackle most bottlenecks and democratise algal biotechnology:</p>
 +
    <hr>
 +
    <ul style="font-size:150%; display:block; float:left; text-align:left">
 +
      <li><a href="https://2016.igem.org/Team:Cambridge-JIC/Parts" style="color:#B7E2F0">Library of chloroplast parts</a> for C. reinhardtii — to facilitate the assembly of synthetic constructs using Phytobricks standard
 +
      <li><a href="https://2016.igem.org/Team:Cambridge-JIC/Biolistics" style="color:#B7E2F0">Open-source biolistics device</a> — for cheaper chloroplasts transformations
 +
      <li><a href="https://2016.igem.org/Team:Cambridge-JIC/GrowthFacility" style="color:#B7E2F0">Open source microalgae growth facility</a> — to growth algae in an affordable way
 +
      <li><a href="https://2016.igem.org/Team:Cambridge-JIC/Homoplasmy" style="color:#B7E2F0">Novel Cas9 strategy</a> — to accelerate the process of achieving homoplasmy
 +
      <li><a href="https://2016.igem.org/Team:Cambridge-JIC/Model" style="color:#B7E2F0">Modelling of Cas9 dynamics</a> — to predict the time our Cas9 stategy would take to transform all copies of a chloroplast’s genome
 +
    <ul>
 +
    </div>
 +
    <div class="col-md-1" style="margin-right: 0px">
 +
    </div>
 +
    </div>
 +
</section>
 +
 
 +
<section style="background-color:#fff; text-align: center; padding: 5% 0%">
 +
    <div class="container" style="color:#000">
 +
    <p style="font-family:Open Sans; font-size:180%; text-align:left">References</p>
 +
    <p style="font-family:Open Sans; font-size:150%; text-align:left">1. Wannathong T et al., New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii, Appl Microbiol Biotechnol (2016) 100:5467–5477 </p>
 +
    <p style="font-family:Open Sans; font-size:150%; text-align:left">2. De Las Rivas J et al., Comparative Analysis of Chloroplast Genomes: Functional Annotation, Genome-Based Phylogeny, and Deduced Evolutionary Patterns, Genome Res. 2002. 12: 567-583
 +
</p>
 +
    <p style="font-family:Open Sans; font-size:150%; text-align:left">Viitanen P V et al., Metabolic Engineering of the Chloroplast Genome Using the Echerichia coli ubiC Gene Reveals That Chorismate Is a Readily Abundant Plant Precursor for p-Hydroxybenzoic Acid Biosynthesis, Plant Physiol. 2004 Dec; 136(4): 4048–4060.
 +
</p>
 +
    </div>
 +
</section> 
  
 
</body>
 
</body>
 
</html>
 
</html>
 
{{Cambridge-JIC/Templates/Footer}}
 
{{Cambridge-JIC/Templates/Footer}}

Latest revision as of 22:46, 18 October 2016

Cambridge-JIC

OUR MOTIVATION...

I. Microalgal chloroplasts as an alternative expression system


Chloroplasts hold a massive potential as an alternative protein expression system, due to their outstanding expression yields, diversity of post-translational modifications and auto/mixotrophic lifestyles of plants and microalgae.


Various proteins have already been successfully expressed in chloroplasts, including:

  • monoclonal antibodies
  • antigens
  • anti-toxins
  • growth factors

Transgene expression in microalgae can total up to 30-50% of a cell’s dry biomass, as unlike in higher plants and mammals, metabolic energy in microalgae is not directed towards maintaining complex differentiated structures.


II. Microalgae chloroplasts as a model for higher plants

Research in C. reinhardtii chloroplasts can help achieve the following aims:

  • increase yields of oils for biofuels
  • elucidate photosynthetic machinery
  • improve C fixation to combat the international food crisis

Due to extensive evolutionary conservation of the chloroplast genome, research in the chloroplasts of microalgae, such as Chlamydomonas reinhardtii, is likely to be applicable to studies of other plants. On the other hand, Chlamydomonas reinhardtii is much easier to grow and maintain than higher plants, such as Marchantia polymorpha.


III. Bottlenecks of chloroplast engineering

Chloroplasts engineering is currently underexplored due to:


  • Time issues — it takes 2-3 months to achieve homoplasmy, as state where all chloroplast genome copies have been transformed and when experimental results can be obtained
  • Experimental cost — chloroplasts can be reliably transformed almost exclusively by biolistic devices, and commercial biolistic devices are very expensive.
  • Lack of modular chloroplast genetic parts available — research is more time-consuming and cumbersome.

IV. Our solutions

Our project aims to tackle most bottlenecks and democratise algal biotechnology:


References

1. Wannathong T et al., New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii, Appl Microbiol Biotechnol (2016) 100:5467–5477

2. De Las Rivas J et al., Comparative Analysis of Chloroplast Genomes: Functional Annotation, Genome-Based Phylogeny, and Deduced Evolutionary Patterns, Genome Res. 2002. 12: 567-583

Viitanen P V et al., Metabolic Engineering of the Chloroplast Genome Using the Echerichia coli ubiC Gene Reveals That Chorismate Is a Readily Abundant Plant Precursor for p-Hydroxybenzoic Acid Biosynthesis, Plant Physiol. 2004 Dec; 136(4): 4048–4060.