Difference between revisions of "Team:Cambridge-JIC/Motivation"

 
(30 intermediate revisions by the same user not shown)
Line 12: Line 12:
 
.darkBlue:link
 
.darkBlue:link
 
{
 
{
         color:#000;
+
         color:#B7E2F0;
 
         text-decoration:none;
 
         text-decoration:none;
 
      
 
      
Line 19: Line 19:
 
.darkBlue:hover
 
.darkBlue:hover
 
{
 
{
         color:#B7E2F0;
+
         color:#fff;
 
         text-decoration:none;
 
         text-decoration:none;
 
}
 
}
  
 
.darkWhite, .darkBlue{
 
.darkWhite, .darkBlue{
 +
        color: #B7E2F0
 
         font-weight: bold;
 
         font-weight: bold;
         font-size: 150%;
+
         font-size: 100%;
 
}
 
}
  
 
.darkBlue:active
 
.darkBlue:active
 
{
 
{
         color:#B7E2F0;
+
         color:#fff;
 
         text-decoration:none;
 
         text-decoration:none;
 
}
 
}
Line 49: Line 50:
 
         background-color: #B7E2F0;
 
         background-color: #B7E2F0;
 
}
 
}
 +
 
</style>
 
</style>
  
Line 56: Line 58:
 
</section>
 
</section>
  
<section style="background-color:#3d3d3d; text-align: center; padding: 20% 0%">
+
<section style="background-color:#3d3d3d; text-align: center; padding: 15% 0%">
 
     <div class="container" style="color:#fff">
 
     <div class="container" style="color:#fff">
     <p class="darkBlue" style="font-family:Open Sans; font-size:150%; text-align:center">I. Microalgal chlroplasts as an alternative expression system</p>
+
     <p class="darkBlue" style="font-family:Open Sans; font-size:180%; text-align:center">I. Microalgal chloroplasts as an alternative expression system</p>
 
     </div>
 
     </div>
 
</section>
 
</section>
 
   
 
   
<section style="background-color:#fff; text-align: center; padding: 12% 0%">
+
<section style="background-color:#fff; text-align: center; padding: 10% 0%">
 
     <div class="container" style="color:#000">
 
     <div class="container" style="color:#000">
 
     <div class="col-md-3">
 
     <div class="col-md-3">
Line 78: Line 80:
 
<section style="background-color:#3d3d3d; text-align: center; padding: 12% 0%">
 
<section style="background-color:#3d3d3d; text-align: center; padding: 12% 0%">
 
     <div class="container" style="color:#fff">
 
     <div class="container" style="color:#fff">
     <p class="darkBlue" style="font-family:Open Sans; font-size:150%; text-align:center">I. Microalgal chlroplasts as an alternative expression system</p>
+
 
 +
     <div class="col-md-4">
 +
    <p style="font-family:Open Sans; font-size:150%; text-align:center;">Various proteins have already been successfully expressed in chloroplasts, including:</p>
 +
    <ul style="font-size:150%; display:block; float:left; text-align:left">
 +
      <li>monoclonal antibodies
 +
      <li>antigens
 +
      <li>anti-toxins
 +
      <li>growth factors
 +
    <ul>
 +
    </div>
 +
    <div class="col-md-4">
 +
    </div>
 +
    <div class="col-md-4" style="margin-right: 0px">
 +
    <hr>
 +
    <p style="font-family:Arvo; font-size: 150%; text-align:right">Transgene expression in microalgae can total up to 30-50% of a cell’s dry biomass, as unlike in higher plants and mammals, metabolic energy in microalgae is not directed towards maintaining complex differentiated structures.</p>
 +
    <hr>
 +
    </div>
 +
    </div>
 +
</section>
 +
 
 +
<section style="background-color:#fff; text-align: center; padding: 15% 0%">
 +
    <div class="container" style="color:#000">
 +
    <p style="font-family:Open Sans; font-size:180%; text-align:center">II. Microalgae chloroplasts as a model for higher plants</p>
 
     </div>
 
     </div>
 
</section>
 
</section>
Line 84: Line 108:
 
<section style="background-color:#3d3d3d; text-align: center; padding: 12% 0%">
 
<section style="background-color:#3d3d3d; text-align: center; padding: 12% 0%">
 
     <div class="container" style="color:#fff">
 
     <div class="container" style="color:#fff">
     <p class="darkBlue" style="font-family:Open Sans; font-size:150%; text-align:center">I. Microalgal chlroplasts as an alternative expression system</p>
+
 
 +
     <div class="col-md-4">
 +
    <p style="font-family:Open Sans; font-size:150%; text-align:center;">Research in C. reinhardtii chloroplasts can help achieve the following aims:</p>
 +
    <ul style="font-size:150%; display:block; float:left; text-align:left">
 +
      <li>increase yields of oils for biofuels
 +
      <li>elucidate photosynthetic machinery
 +
      <li>improve C fixation to combat the international food crisis
 +
    <ul>
 +
    </div>
 +
    <div class="col-md-4">
 +
    </div>
 +
    <div class="col-md-4" style="margin-right: 0px">
 +
    <hr>
 +
    <p style="font-family:Arvo; font-size: 150%; text-align:right">Due to extensive evolutionary conservation of the chloroplast genome, research in the chloroplasts of microalgae, such as Chlamydomonas reinhardtii, is likely to be applicable to studies of other plants. On the other hand, Chlamydomonas reinhardtii is much easier to grow and maintain than higher plants, such as Marchantia polymorpha. </p>
 +
    <hr>
 +
    </div>
 
     </div>
 
     </div>
 
</section>
 
</section>
 +
 +
<section style="background-color:#fff; text-align: center; padding: 15% 0%">
 +
    <div class="container" style="color:#000">
 +
    <p class="darkBlue" style="font-family:Open Sans; font-size:180%; text-align:center">III. Bottlenecks of chloroplast engineering
 +
</p>
 +
    </div>
 +
</section>
 +
  
 
<section style="background-color:#3d3d3d; text-align: center; padding: 12% 0%">
 
<section style="background-color:#3d3d3d; text-align: center; padding: 12% 0%">
 
     <div class="container" style="color:#fff">
 
     <div class="container" style="color:#fff">
     <p class="darkBlue" style="font-family:Open Sans; font-size:150%; text-align:center">I. Microalgal chlroplasts as an alternative expression system</p>
+
 
 +
     <div class="col-md-3">
 +
    </div>
 +
    <div class="col-md-6">
 +
    <p style="font-family:Open Sans; font-size:150%; text-align:center;">Chloroplasts engineering is currently underexplored due to:</p>
 +
    <hr>
 +
    <ul style="font-size:150%; display:block; float:left; text-align:left">
 +
      <li>Time issues — it takes 2-3 months to achieve homoplasmy, as state where all chloroplast genome copies have been transformed and when experimental results can be obtained
 +
      <li>Experimental cost — chloroplasts can be reliably transformed almost exclusively by biolistic devices, and commercial biolistic devices are very expensive.
 +
      <li>Lack of modular chloroplast genetic parts available — research is more time-consuming and cumbersome.
 +
    <ul>
 +
    </div>
 +
    <div class="col-md-3" style="margin-right: 0px">
 +
    </div>
 
     </div>
 
     </div>
 
</section>
 
</section>
 +
 +
<section style="background-color:#fff; text-align: center; padding: 15% 0%">
 +
    <div class="container" style="color:#000">
 +
    <p class="darkBlue" style="font-family:Open Sans; font-size:180%; text-align:center"> IV. Our solutions</p>
 +
    </div>
 +
</section> 
 +
 +
 +
<section style="background-color:#3d3d3d; text-align: center; padding: 12% 0%">
 +
    <div class="container" style="color:#fff">
 +
 +
    <div class="col-md-1">
 +
    </div>
 +
    <div class="col-md-10">
 +
    <p style="font-family:Open Sans; font-size:150%; text-align:center;">Our project aims to tackle most bottlenecks and democratise algal biotechnology:</p>
 +
    <hr>
 +
    <ul style="font-size:150%; display:block; float:left; text-align:left">
 +
      <li><a href="https://2016.igem.org/Team:Cambridge-JIC/Parts" style="color:#B7E2F0">Library of chloroplast parts</a> for C. reinhardtii — to facilitate the assembly of synthetic constructs using Phytobricks standard
 +
      <li><a href="https://2016.igem.org/Team:Cambridge-JIC/Biolistics" style="color:#B7E2F0">Open-source biolistics device</a> — for cheaper chloroplasts transformations
 +
      <li><a href="https://2016.igem.org/Team:Cambridge-JIC/GrowthFacility" style="color:#B7E2F0">Open source microalgae growth facility</a> — to growth algae in an affordable way
 +
      <li><a href="https://2016.igem.org/Team:Cambridge-JIC/Homoplasmy" style="color:#B7E2F0">Novel Cas9 strategy</a> — to accelerate the process of achieving homoplasmy
 +
      <li><a href="https://2016.igem.org/Team:Cambridge-JIC/Model" style="color:#B7E2F0">Modelling of Cas9 dynamics</a> — to predict the time our Cas9 stategy would take to transform all copies of a chloroplast’s genome
 +
    <ul>
 +
    </div>
 +
    <div class="col-md-1" style="margin-right: 0px">
 +
    </div>
 +
    </div>
 +
</section>
 +
 +
<section style="background-color:#fff; text-align: center; padding: 5% 0%">
 +
    <div class="container" style="color:#000">
 +
    <p style="font-family:Open Sans; font-size:180%; text-align:left">References</p>
 +
    <p style="font-family:Open Sans; font-size:150%; text-align:left">1. Wannathong T et al., New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii, Appl Microbiol Biotechnol (2016) 100:5467–5477 </p>
 +
    <p style="font-family:Open Sans; font-size:150%; text-align:left">2. De Las Rivas J et al., Comparative Analysis of Chloroplast Genomes: Functional Annotation, Genome-Based Phylogeny, and Deduced Evolutionary Patterns, Genome Res. 2002. 12: 567-583
 +
</p>
 +
    <p style="font-family:Open Sans; font-size:150%; text-align:left">Viitanen P V et al., Metabolic Engineering of the Chloroplast Genome Using the Echerichia coli ubiC Gene Reveals That Chorismate Is a Readily Abundant Plant Precursor for p-Hydroxybenzoic Acid Biosynthesis, Plant Physiol. 2004 Dec; 136(4): 4048–4060.
 +
</p>
 +
    </div>
 +
</section> 
  
 
</body>
 
</body>
 
</html>
 
</html>
 
{{Cambridge-JIC/Templates/Footer}}
 
{{Cambridge-JIC/Templates/Footer}}

Latest revision as of 22:46, 18 October 2016

Cambridge-JIC

OUR MOTIVATION...

I. Microalgal chloroplasts as an alternative expression system


Chloroplasts hold a massive potential as an alternative protein expression system, due to their outstanding expression yields, diversity of post-translational modifications and auto/mixotrophic lifestyles of plants and microalgae.


Various proteins have already been successfully expressed in chloroplasts, including:

  • monoclonal antibodies
  • antigens
  • anti-toxins
  • growth factors

Transgene expression in microalgae can total up to 30-50% of a cell’s dry biomass, as unlike in higher plants and mammals, metabolic energy in microalgae is not directed towards maintaining complex differentiated structures.


II. Microalgae chloroplasts as a model for higher plants

Research in C. reinhardtii chloroplasts can help achieve the following aims:

  • increase yields of oils for biofuels
  • elucidate photosynthetic machinery
  • improve C fixation to combat the international food crisis

Due to extensive evolutionary conservation of the chloroplast genome, research in the chloroplasts of microalgae, such as Chlamydomonas reinhardtii, is likely to be applicable to studies of other plants. On the other hand, Chlamydomonas reinhardtii is much easier to grow and maintain than higher plants, such as Marchantia polymorpha.


III. Bottlenecks of chloroplast engineering

Chloroplasts engineering is currently underexplored due to:


  • Time issues — it takes 2-3 months to achieve homoplasmy, as state where all chloroplast genome copies have been transformed and when experimental results can be obtained
  • Experimental cost — chloroplasts can be reliably transformed almost exclusively by biolistic devices, and commercial biolistic devices are very expensive.
  • Lack of modular chloroplast genetic parts available — research is more time-consuming and cumbersome.

IV. Our solutions

Our project aims to tackle most bottlenecks and democratise algal biotechnology:


References

1. Wannathong T et al., New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii, Appl Microbiol Biotechnol (2016) 100:5467–5477

2. De Las Rivas J et al., Comparative Analysis of Chloroplast Genomes: Functional Annotation, Genome-Based Phylogeny, and Deduced Evolutionary Patterns, Genome Res. 2002. 12: 567-583

Viitanen P V et al., Metabolic Engineering of the Chloroplast Genome Using the Echerichia coli ubiC Gene Reveals That Chorismate Is a Readily Abundant Plant Precursor for p-Hydroxybenzoic Acid Biosynthesis, Plant Physiol. 2004 Dec; 136(4): 4048–4060.