(Replaced content with "{{Team:Tongji_Shanghai/CSS}} <html> #tryout{ color:red; } </html>") |
Will edison (Talk | contribs) |
||
(10 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | {{Team:Tongji_Shanghai/ | + | {{Team:Tongji_Shanghai/head}} |
− | <html> | + | <!--[if IE 8 ]><html class="ie ie8" lang="en"> <![endif]--> |
+ | <!--[if (gte IE 9)|!(IE)]><html lang="en" class="no-js"> <![endif]--> | ||
+ | <html lang="en"> | ||
− | # | + | |
− | + | <body> | |
+ | |||
+ | |||
+ | |||
+ | <!-- Container --> | ||
+ | <div id="container"> | ||
+ | |||
+ | |||
+ | |||
+ | <!-- Start Page Banner --> | ||
+ | <div class="page-banner"> | ||
+ | <div class="container"> | ||
+ | <div class="row"> | ||
+ | <div class="col-md-6"> | ||
+ | <h2>Achievment</h2> | ||
+ | <p>Why we deserve a medal.</p> | ||
+ | </div> | ||
+ | <div class="col-md-6"> | ||
+ | <ul class="breadcrumbs"> | ||
+ | <li><a href="#">Home</a></li> | ||
+ | <li>Achievement</li> | ||
+ | </ul> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | <!-- End Page Banner --> | ||
+ | |||
+ | |||
+ | <!-- Start Content --> | ||
+ | <div id="content"> | ||
+ | <div class="container"> | ||
+ | <div class="row blog-page"> | ||
+ | |||
+ | <!--Sidebar--> | ||
+ | <div class="col-md-3 sidebar left-sidebar"> | ||
+ | |||
+ | <!-- Categories Widget --> | ||
+ | <div class="widget widget-categories" style="display: block;position: fixed;" id="sidebar1"> | ||
+ | <h4>Modeling<span class="head-line"></span></h4> | ||
+ | <ul> | ||
+ | <li> | ||
+ | <a href="#">Overview</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#">Model Building</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#">Verification</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#">Discussion</a> | ||
+ | </li> | ||
+ | </ul> | ||
+ | </div> | ||
+ | |||
+ | </div> | ||
+ | <!--End sidebar--> | ||
+ | |||
+ | |||
+ | <!-- Classic Heading --> | ||
+ | <div class="col-md-9"> | ||
+ | <!-- Fudan ~ Tongji --> | ||
+ | <div class="row"> | ||
+ | <div class="col-md-12" style="margin:0px; padding:0"> | ||
+ | <h3 class="classic-title" style="margin-top:0px"><span>Overview</span></h3> | ||
+ | <h4>Drug Concentration Forecasting in Body Tissue<span class="head-line"></span></h4><br> | ||
+ | |||
+ | <!-- Some Text --> | ||
+ | <ul style="margin-left:0px; font-size:16px;">In pharmaceutical research and development,it is certainly worth making predictions of trends and variation of the drug concentration in the body tissue. | ||
+ | We use a classical pharmacokinetic model to build a drug concentration forecasting function to describe the drug time-dependent concentration change trend, which could be a reference for pharmaceutical research.</ul> | ||
+ | <br> | ||
+ | |||
+ | <h3 class="classic-title" style="margin-top:0px"><span>Model Building</span></h3> | ||
+ | <ul style="margin-left:0px; font-size:16px;">I.After taking drug, the change rate of drug concentration in body can be expressed as the dynamics equations:</ul><br> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/1/10/T--Tongji_Shanghai--form1.png" style="max-width:300px;margin-left:50px;"> | ||
+ | <br> | ||
+ | <ul style="margin-left:0px; font-size:16px;">where x(t) is the drug concentration in body fluids, </ul> | ||
+ | <ul style="margin-left:0px; font-size:16px;">r01(t) is the drug absorption rate,</ul> | ||
+ | <ul style="margin-left:0px; font-size:16px;">r10(t) is the elimination rate.</ul> | ||
+ | <br> | ||
+ | <ul style="margin-left:0px; font-size:16px;">As r10(t) is proportional to the x(t), there is another formula:</ul><br> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/f/f2/T--Tongji_Shanghai--form2.png" style="max-width:300px;margin-left:50px;"><br> | ||
+ | <ul style="margin-left:0px; font-size:16px;">where k10 is the constant of elimination rate </ul> | ||
+ | <br> | ||
+ | |||
+ | <ul style="margin-left:0px; font-size:16px;">II. According to knowledge of pharmacology, absorption rate of drug in proportion to the amount of drug that are not absorbed;the elimination rate in proportion to the drug concentration in body fluids, there is another formula: | ||
+ | </ul> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/1/14/T--Tongji_Shanghai--form3.png"style="max-width:300px;margin-left:50px;"> | ||
+ | <ul style="margin-left:0px; font-size:16px;">F is defined as the total amount of drug.</ul> | ||
+ | <ul style="margin-left:0px; font-size:16px;">T is the total time that patients take the drug.</ul> | ||
+ | <ul style="margin-left:0px; font-size:16px;">In most cases, drug is taken at moment, T = 0</ul> | ||
+ | <ul style="margin-left:0px; font-size:16px;">After several mathematical derivation, we get the model function to describe concentration in body tissue.</ul><br> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/e/e8/T--Tongji_Shanghai--form4.png"style="max-width:450px;margin-left:50px;"><br> | ||
+ | <br> | ||
+ | |||
+ | <h3 class="classic-title" style="margin-top:0px"><span>Experiments Verification</span></h3> | ||
+ | <ul style="margin-left:0px; font-size:16px;">We used a set of experiment data to conduct verification of our model. </ul> | ||
+ | <ul style="margin-left:0px; font-size:16px;">We measured the drug concentration, after patients take 3g drug sample. And we get the drug concentration change trend in a few hours.</ul><br> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/e/ee/T--Tongji_Shanghai--form5.png"><br> | ||
+ | |||
+ | <ul style="margin-left:0px; font-size:16px;">Based the experiment data, we use a classical non-linear model to build a differential equation and solve it, estimating the return model parameter from the experimental data by ordinary least squares method. </ul><br> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/9/97/T--Tongji_Shanghai--form6.png"><br> | ||
+ | <ul style="margin-left:0px; font-size:16px;">Comparing experiment data and model fitted data, we find the model are in good agreement with experiments results.</ul> | ||
+ | <br> | ||
+ | |||
+ | <h3 class="classic-title" style="margin-top:0px"><span>Discussion</span></h3> | ||
+ | <ul style="margin-left:0px; font-size:16px;">It's necessary to monitor the variation of drug concentration in Body Tissue</ul> | ||
+ | <ul style="margin-left:0px; font-size:16px;">Based on medical dynamics theory, we build a mathematical model to describe the drug time-dependent concentration change trend. Using this model, we can determine the drug concentration in blood from mathematical theory for various kinds of drug and different conditions. We use our experiments results to verify our model accuracy, and we find the model forecasting results are in good agreement with experiments results. </ul> | ||
+ | <ul style="margin-left:0px; font-size:16px;">We believe our mathematic model, which gives a description of drug concentration change in body tissue, is able to be biological universal and reasonable for many cases. Due to the universal advantage of our model, this model can be regarded as one analysis reference for the drug metabolism research, moreover, medicinal development and clinical applications.</ul> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <!-- Basic Parts--> | ||
+ | |||
+ | |||
+ | |||
+ | </div> | ||
+ | |||
+ | |||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | </div> | ||
+ | |||
+ | |||
+ | </div> | ||
+ | <!-- End Content --> | ||
+ | |||
+ | |||
+ | <!-- Start Footer --> | ||
+ | |||
+ | <!-- End Footer --> | ||
+ | |||
+ | |||
+ | <!-- End Container --> | ||
+ | |||
+ | <!-- Go To Top Link --> | ||
+ | <a href="#" class="back-to-top"><i class="fa fa-angle-up"></i></a> | ||
+ | |||
+ | <!-- Style Switcher --> | ||
+ | <div class="switcher-box"> | ||
+ | |||
+ | <h4>Style Switcher</h4> | ||
+ | <span>12 Predefined Color Skins</span> | ||
+ | <ul class="colors-list"> | ||
+ | <li> | ||
+ | <a onClick="setActiveStyleSheet('blue'); return false;" title="Blue" class="blue"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a onClick="setActiveStyleSheet('sky-blue'); return false;" title="Sky Blue" class="sky-blue"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a onClick="setActiveStyleSheet('cyan'); return false;" title="Cyan" class="cyan"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a onClick="setActiveStyleSheet('jade'); return false;" title="Jade" class="jade"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a onClick="setActiveStyleSheet('green'); return false;" title="Green" class="green"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a onClick="setActiveStyleSheet('purple'); return false;" title="Purple" class="purple"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a onClick="setActiveStyleSheet('pink'); return false;" title="Pink" class="pink"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a onClick="setActiveStyleSheet('red'); return false;" title="Red" class="red"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a onClick="setActiveStyleSheet('orange'); return false;" title="Orange" class="orange"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a onClick="setActiveStyleSheet('yellow'); return false;" title="Yellow" class="yellow"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a onClick="setActiveStyleSheet('peach'); return false;" title="Peach" class="peach"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a onClick="setActiveStyleSheet('beige'); return false;" title="Biege" class="beige"></a> | ||
+ | </li> | ||
+ | </ul> | ||
+ | <span>Top Bar Color</span> | ||
+ | <select id="topbar-style" class="topbar-style"> | ||
+ | <option value="1">Light (Default)</option> | ||
+ | <option value="2">Dark</option> | ||
+ | <option value="3">Color</option> | ||
+ | </select> | ||
+ | <span>Layout Style</span> | ||
+ | <select id="layout-style" class="layout-style"> | ||
+ | <option value="1">Wide</option> | ||
+ | <option value="2">Boxed</option> | ||
+ | </select> | ||
+ | <span>Patterns for Boxed Version</span> | ||
+ | <ul class="bg-list"> | ||
+ | <li> | ||
+ | <a href="#" class="bg1"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#" class="bg2"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#" class="bg3"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#" class="bg4"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#" class="bg5"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#" class="bg6"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#" class="bg7"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#" class="bg8"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#" class="bg9"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#" class="bg10"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#" class="bg11"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#" class="bg12"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#" class="bg13"></a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#" class="bg14"></a> | ||
+ | </li> | ||
+ | </ul> | ||
+ | </div> | ||
+ | |||
+ | <script type="text/javascript" src="https://2016.igem.org/Team:Tongji_Shanghai/js/script_js?action=raw&ctype=text/javascript"></script> | ||
+ | <script type="text/javascript" > | ||
+ | function menuFixed(id){ | ||
+ | var obj = document.getElementById(id); | ||
+ | var _getHeight = obj.offsetTop; | ||
+ | |||
+ | window.onscroll = function(){ | ||
+ | changePos(id,_getHeight); | ||
} | } | ||
+ | } | ||
+ | function changePos(id,height){ | ||
+ | var obj = document.getElementById(id);var windowBottom = $(window).scrollTop() + $(window).innerHeight(); | ||
+ | var scrollTop = document.documentElement.scrollTop || document.body.scrollTop - 150; | ||
+ | var windowBottom = $(window).scrollTop() + $(window).innerHeight(); | ||
+ | var w = window.innerWidth; | ||
+ | if(w>=1024){ | ||
+ | if($(window).scrollTop() + $(window).height() > $(document).height() - 260){ | ||
+ | $('#sidebar1').fadeOut("fast");}else{$('#sidebar1').fadeIn("fast");} | ||
+ | } | ||
+ | if(scrollTop < height){ obj.style.position = 'relative'; | ||
+ | }else{ | ||
+ | obj.style.position = 'fixed'; | ||
+ | } | ||
+ | } | ||
+ | </script> | ||
+ | |||
+ | <script type="text/javascript"> | ||
+ | window.onload = function(){ | ||
+ | menuFixed('sidebar1'); | ||
+ | } | ||
+ | </script> | ||
+ | |||
+ | </body> | ||
+ | |||
</html> | </html> | ||
+ | {{Team:Tongji_Shanghai/footer}} |
Latest revision as of 20:53, 19 October 2016
Overview
Drug Concentration Forecasting in Body Tissue
- In pharmaceutical research and development,it is certainly worth making predictions of trends and variation of the drug concentration in the body tissue.
We use a classical pharmacokinetic model to build a drug concentration forecasting function to describe the drug time-dependent concentration change trend, which could be a reference for pharmaceutical research.
Model Building
- I.After taking drug, the change rate of drug concentration in body can be expressed as the dynamics equations:
- where x(t) is the drug concentration in body fluids,
- r01(t) is the drug absorption rate,
- r10(t) is the elimination rate.
- As r10(t) is proportional to the x(t), there is another formula:
- where k10 is the constant of elimination rate
- II. According to knowledge of pharmacology, absorption rate of drug in proportion to the amount of drug that are not absorbed;the elimination rate in proportion to the drug concentration in body fluids, there is another formula:
- F is defined as the total amount of drug.
- T is the total time that patients take the drug.
- In most cases, drug is taken at moment, T = 0
- After several mathematical derivation, we get the model function to describe concentration in body tissue.
Experiments Verification
- We used a set of experiment data to conduct verification of our model.
- We measured the drug concentration, after patients take 3g drug sample. And we get the drug concentration change trend in a few hours.
- Based the experiment data, we use a classical non-linear model to build a differential equation and solve it, estimating the return model parameter from the experimental data by ordinary least squares method.
- Comparing experiment data and model fitted data, we find the model are in good agreement with experiments results.
Discussion
- It's necessary to monitor the variation of drug concentration in Body Tissue
- Based on medical dynamics theory, we build a mathematical model to describe the drug time-dependent concentration change trend. Using this model, we can determine the drug concentration in blood from mathematical theory for various kinds of drug and different conditions. We use our experiments results to verify our model accuracy, and we find the model forecasting results are in good agreement with experiments results.
- We believe our mathematic model, which gives a description of drug concentration change in body tissue, is able to be biological universal and reasonable for many cases. Due to the universal advantage of our model, this model can be regarded as one analysis reference for the drug metabolism research, moreover, medicinal development and clinical applications.