Difference between revisions of "Team:UCLA/Experiments"

Line 20: Line 20:
 
   <div class="row" id="cdi-team-journal">
 
   <div class="row" id="cdi-team-journal">
  
<p><strong>Development of the Project</strong></p>
+
<h2><strong>Development of the Project</strong></h2>
 
<p>In order to test the expression of foreign CDI systems in DH5-&alpha; and <em>Enterobacter aerogenes</em>, we need to express each CDI system on a plasmid. We first received two recombinant <em>E. coli</em> strains from the Hayes lab located at the University of California, Santa Barbara: EPI100 with &nbsp;pDAL930, containing the CDI system from EC869, and X90 with pDAL660, containing the CDI system from EC93. Our next objective was to transform electrocompetent DH5-&alpha; with pDAL930 and pDAL660 to see if we could express foreign CDI systems in DH5-&alpha;. We performed competition and aggregation assays on the transformed DH5-&alpha;, using the strains obtained from the Hayes lab as positive controls and ampicillin resistant DH5-&alpha; as a negative control. Assuming this is successful, we would move on to expressing two CDI systems derived from <em>Enterobacter aerogenes </em>in DH5-&alpha; individually and performing the same set of assays. These CDI systems must be isolated from genomic DNA and constructed into plasmids using Gibson assembly and overlap PCR. We plan on fusing the CdiA and CdiB genes from <em>Enterobacter aerogenes </em>with the CdiA-CT and CdiI genes of EC93, and inserting this chimeric construct into a pSC101-derived pSK33 backbone. Successful colonies are screened using CPCR and sequencing.</p>
 
<p>In order to test the expression of foreign CDI systems in DH5-&alpha; and <em>Enterobacter aerogenes</em>, we need to express each CDI system on a plasmid. We first received two recombinant <em>E. coli</em> strains from the Hayes lab located at the University of California, Santa Barbara: EPI100 with &nbsp;pDAL930, containing the CDI system from EC869, and X90 with pDAL660, containing the CDI system from EC93. Our next objective was to transform electrocompetent DH5-&alpha; with pDAL930 and pDAL660 to see if we could express foreign CDI systems in DH5-&alpha;. We performed competition and aggregation assays on the transformed DH5-&alpha;, using the strains obtained from the Hayes lab as positive controls and ampicillin resistant DH5-&alpha; as a negative control. Assuming this is successful, we would move on to expressing two CDI systems derived from <em>Enterobacter aerogenes </em>in DH5-&alpha; individually and performing the same set of assays. These CDI systems must be isolated from genomic DNA and constructed into plasmids using Gibson assembly and overlap PCR. We plan on fusing the CdiA and CdiB genes from <em>Enterobacter aerogenes </em>with the CdiA-CT and CdiI genes of EC93, and inserting this chimeric construct into a pSC101-derived pSK33 backbone. Successful colonies are screened using CPCR and sequencing.</p>
<p><strong>Protocols</strong></p>
+
<p>&nbsp;</p>
<p>Competition Assay:<br /> <span style="text-decoration: underline;">Purpose:</span> verify inhibitor strain is properly expressing CDI system</p>
+
<h2><strong>Protocols</strong></h2>
 +
<p>&nbsp;</p>
 +
<h3>Competition Assay</h3>
 +
<p><u>Purpose:</u> verify inhibitor strain is properly expressing CDI system</p>
 
<p>Inhibitory strain (CDI+): bacterial strain transformed with designated CDI system</p>
 
<p>Inhibitory strain (CDI+): bacterial strain transformed with designated CDI system</p>
 
<p>Target Strain (CDI-): native bacteria without immunity or bacteria containing appropriate receptor</p>
 
<p>Target Strain (CDI-): native bacteria without immunity or bacteria containing appropriate receptor</p>
 
<p>Positive Control: strain confirmed to properly express the CDI system and can properly inhibit the target</p>
 
<p>Positive Control: strain confirmed to properly express the CDI system and can properly inhibit the target</p>
 
<p>Negative Control: the inhibitory strain lacking any CDI system</p>
 
<p>Negative Control: the inhibitory strain lacking any CDI system</p>
<ol>
+
<ol style="list-style-type: upper-roman;">
<li>Grow all cells to correct growth phase in 50 mL Luria-Bertani (LB) at 37 C in shaking incubator
+
<ol>
+
<li>Positive control to logarithmic phase (OD<sub>600</sub> = ~ 0.35)</li>
+
<li>Inhibitor to OD<sub>600</sub> = 0.35</li>
+
<li>Negative control to OD<sub>600</sub> = 0.35</li>
+
<li>Target to either logarithmic phase or stationary phase</li>
+
</ol>
+
</li>
+
<li>Mix inhibitor (or control) and target cell at a ratio of 10:1 (determined through concentration relation listed below) in LB without any antibiotic
+
<ol>
+
<li>Multiply the Mass Attenuation Constant for your bacteria with the OD<sub>600</sub> reading to get the cellular density of your culture. Use this to determine the 10:1 ratio of inhibitor to target cultures.</li>
+
</ol>
+
</li>
+
</ol>
+
<ul>
+
<li>Incubate at 37 C at 225 rpm while plating at the 0 hour and 4 hour mark</li>
+
</ul>
+
<ol>
+
 
<li>At each mark, plate ten-fold serial dilutions in a M9 salt solution or SOC from 1:1 to 1:1,000,000
 
<li>At each mark, plate ten-fold serial dilutions in a M9 salt solution or SOC from 1:1 to 1:1,000,000
 
<ol>
 
<ol>
Line 63: Line 48:
 
</ol>
 
</ol>
 
</li>
 
</li>
 +
<li>Incubate at 37 C at 225 rpm while plating at the 0 hour and 4 hour mark</li>
 +
<li>Grow all cells to correct growth phase in 50 mL Luria-Bertani (LB) at 37 C in shaking incubator
 +
<ol>
 +
<li>Positive control to logarithmic phase (OD<sub>600</sub> = ~ 0.35)</li>
 +
<li>Inhibitor to OD<sub>600</sub> = 0.35</li>
 +
<li>Negative control to OD<sub>600</sub> = 0.35</li>
 +
<li>Target to either logarithmic phase or stationary phase</li>
 
</ol>
 
</ol>
<ul>
+
</li>
 +
<li>Mix inhibitor (or control) and target cell at a ratio of 10:1 (determined through concentration relation listed below) in LB without any antibiotic
 +
<ol>
 +
<li>Multiply the Mass Attenuation Constant for your bacteria with the OD<sub>600</sub> reading to get the cellular density of your culture. Use this to determine the 10:1 ratio of inhibitor to target cultures.</li>
 +
</ol>
 +
</li>
 
<li>Divide that value by the number of mLs plated to get CFUs/mL</li>
 
<li>Divide that value by the number of mLs plated to get CFUs/mL</li>
</ul>
+
</ol>
<p>Gibson Assembly</p>
+
<p>&nbsp;</p>
<p><span style="text-decoration: underline;">Purpose</span>: Assemble a plasmid with DNA segments that originate from different sources</p>
+
<p>&nbsp;</p>
<ol>
+
<h3>Gibson Assembly</h3>
 +
<p><u>Purpose</u>: Assemble a plasmid with DNA segments that originate from different sources</p>
 +
<ol style="list-style-type: upper-roman;">
 
<li>Design forward and reverse primers for each fragment with homology regions between adjacent fragments</li>
 
<li>Design forward and reverse primers for each fragment with homology regions between adjacent fragments</li>
 
</ol>
 
</ol>
Line 126: Line 125:
 
</table>
 
</table>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<ol>
+
<ol style="list-style-type: upper-roman;">
 +
<li></li>
 
<li>PCR amplify all the fragments using the primers you designed</li>
 
<li>PCR amplify all the fragments using the primers you designed</li>
</ol>
 
<ul>
 
 
<li>Run the fragments on a gel to verify that they are the correct products and gel extract</li>
 
<li>Run the fragments on a gel to verify that they are the correct products and gel extract</li>
</ul>
 
<ol>
 
 
<li>Determine the concentration of each fragment</li>
 
<li>Determine the concentration of each fragment</li>
 
<li>Mix the fragments in equimolar ratios starting with the largest fragment (look at table below) into a PCR tube</li>
 
<li>Mix the fragments in equimolar ratios starting with the largest fragment (look at table below) into a PCR tube</li>
Line 206: Line 202:
 
</tbody>
 
</tbody>
 
</table>
 
</table>
<ol>
+
<ol style="list-style-type: upper-roman;">
 +
<li></li>
 +
<li></li>
 +
<li></li>
 +
<li></li>
 +
<li></li>
 
<li>Use the following formula to determine the amount of the subsequent fragments to add</li>
 
<li>Use the following formula to determine the amount of the subsequent fragments to add</li>
 
</ol>
 
</ol>
Line 212: Line 213:
 
<p>(x) pmol = 1.55 * ( y ng)/(z bp)</p>
 
<p>(x) pmol = 1.55 * ( y ng)/(z bp)</p>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<ol>
+
<ol style="list-style-type: upper-roman;">
 +
<li></li>
 +
<li></li>
 +
<li></li>
 +
<li></li>
 +
<li></li>
 +
<li></li>
 
<li>Fill up to 5 &micro;L with dH<sub>2</sub>O</li>
 
<li>Fill up to 5 &micro;L with dH<sub>2</sub>O</li>
 
<li>Add 5 &micro;L of Gibson Master Mix</li>
 
<li>Add 5 &micro;L of Gibson Master Mix</li>
Line 219: Line 226:
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<p>Overlap PCR</p>
+
<h3>Overlap PCR</h3>
<p><span style="text-decoration: underline;">Purpose</span>: fuse two or more fragments of DNA using PCR (less efficient)</p>
+
<p><u>Purpose</u>: fuse two or more fragments of DNA using PCR (less efficient)</p>
<ol>
+
<ol style="list-style-type: upper-roman;">
<li>Design PCR primers with 20 base pairs of homology</li>
+
 
<li>PCR amplify the fragments</li>
 
<li>PCR amplify the fragments</li>
</ol>
+
<li>Design PCR primers with 20 base pairs of homology</li>
<ul>
+
 
<li>Run product on a gel to confirm that you have the correct products
 
<li>Run product on a gel to confirm that you have the correct products
 
<ol>
 
<ol>
Line 231: Line 236:
 
</ol>
 
</ol>
 
</li>
 
</li>
</ul>
 
<ol>
 
 
<li>Use the PCR products as template in a PCR reaction where the overlap regions will anneal on their own
 
<li>Use the PCR products as template in a PCR reaction where the overlap regions will anneal on their own
 
<ol>
 
<ol>
Line 241: Line 244:
 
<li>PCR amplify the fused fragments with the end primers that encapsulate both fragments</li>
 
<li>PCR amplify the fused fragments with the end primers that encapsulate both fragments</li>
 
</ol>
 
</ol>
<p>Colony PCR</p>
+
<p>&nbsp;</p>
<p><span style="text-decoration: underline;">Purpose</span>: Determine if cells took up construct after transformation</p>
+
<p>&nbsp;</p>
<ol>
+
<h3>Colony PCR</h3>
 +
<p><u>Purpose</u>: Determine if cells took up construct after transformation</p>
 +
<ol style="list-style-type: upper-roman;">
 +
<li>Take &ldquo;x&rdquo; number of colonies from a plate of bacteria and suspend them separately in 100 &micro;L of dH<sub>2</sub>O</li>
 
<li>Design primers that amplify a region contained in the target construct (surrounding homology region ideally)
 
<li>Design primers that amplify a region contained in the target construct (surrounding homology region ideally)
 
<ol>
 
<ol>
Line 249: Line 255:
 
</ol>
 
</ol>
 
</li>
 
</li>
<li>Take &ldquo;x&rdquo; number of colonies from a plate of bacteria and suspend them separately in 100 &micro;L of dH<sub>2</sub>O</li>
 
</ol>
 
<ul>
 
 
<li>Create a mastermix of forward primers, reverse primers, APEX mastermix, and dH<sub>2</sub>O
 
<li>Create a mastermix of forward primers, reverse primers, APEX mastermix, and dH<sub>2</sub>O
 
<ol>
 
<ol>
 
<li>The mastermix should be made for &ldquo;x&rdquo; number of reactions without the colony suspension added</li>
 
<li>The mastermix should be made for &ldquo;x&rdquo; number of reactions without the colony suspension added</li>
<li></li>
 
 
</ol>
 
</ol>
 
</li>
 
</li>
</ul>
+
</ol>
 
<table>
 
<table>
 
<tbody>
 
<tbody>
Line 311: Line 313:
 
</tbody>
 
</tbody>
 
</table>
 
</table>
<ol>
+
<ol style="list-style-type: upper-roman;">
 +
<li></li>
 +
<li></li>
 +
<li></li>
 
<li>Add 1 &micro;L of the colony suspension to 24 &micro;L of the mastermix in a PCR tube and run the samples in a thermocycler</li>
 
<li>Add 1 &micro;L of the colony suspension to 24 &micro;L of the mastermix in a PCR tube and run the samples in a thermocycler</li>
 
<li>Run the PCR products on a gel to determine if you have the correct construct</li>
 
<li>Run the PCR products on a gel to determine if you have the correct construct</li>
 
</ol>
 
</ol>
<p>Electroporation of plasmids</p>
+
<p>&nbsp;</p>
 +
<p>&nbsp;</p>
 +
<h3>Electroporation of plasmids</h3>
 +
<ol style="list-style-type: upper-roman;">
 +
<li>Load cuvette into electroporation apparatus and pulse
 
<ol>
 
<ol>
<li>Take electro-competent cells and put them on ice for ten minutes (or until they have partially thawed)</li>
+
<li>Make sure arc time result is appropriate considering the cuvette used</li>
<li>Put electroporation cuvettes on ice</li>
+
</ol>
+
<ul>
+
<li>Start incubating 1 mL of SOC</li>
+
</ul>
+
<ol>
+
<li>Add 1 &micro;L of plasmid insert to cells
+
<ol>
+
<li>Mix gently by flicking the bottom of the tube</li>
+
 
</ol>
 
</ol>
 
</li>
 
</li>
Line 334: Line 334:
 
</ol>
 
</ol>
 
</li>
 
</li>
<li>Load cuvette into electroporation apparatus and pulse
+
<li>Add 1 &micro;L of plasmid insert to cells
 
<ol>
 
<ol>
<li>Make sure arc time result is appropriate considering the cuvette used</li>
+
<li>Mix gently by flicking the bottom of the tube</li>
 
</ol>
 
</ol>
 
</li>
 
</li>
</ol>
+
<li>Start incubating 1 mL of SOC</li>
<ul>
+
<li>Take electro-competent cells and put them on ice for ten minutes (or until they have partially thawed)</li>
 +
<li>Put electroporation cuvettes on ice</li>
 
<li>Add 970 &micro;L of warm SOC to cuvette and pipet slowly up and down twice</li>
 
<li>Add 970 &micro;L of warm SOC to cuvette and pipet slowly up and down twice</li>
 
<li>Load solution into a 1.5 mL micro-centrifuge tube and shake at 37 C and 800 rpm for 1 h</li>
 
<li>Load solution into a 1.5 mL micro-centrifuge tube and shake at 37 C and 800 rpm for 1 h</li>
</ul>
 
<ol>
 
 
<li>Place plates with appropriate antibiotic into an incubator at 37 C</li>
 
<li>Place plates with appropriate antibiotic into an incubator at 37 C</li>
 
<li>After the hour is up, spin the cells down at 6000 rpm for 4 min
 
<li>After the hour is up, spin the cells down at 6000 rpm for 4 min
Line 353: Line 352:
 
<li>Plate using serial dilutions and incubate for desired length</li>
 
<li>Plate using serial dilutions and incubate for desired length</li>
 
</ol>
 
</ol>
 
  </div>
 
 
 
  <div class="row" id="pcage-team-journal">
 
 
<h3><strong>PCQuad and O3-33 Cloning:</strong></h3>
 
<p><span style="font-weight: 400;">O3-33:</span></p>
 
<ul>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">PCR Conditions</span>
 
<ul>
 
<li><span style="font-weight: 400;">&nbsp;</span></li>
 
</ul>
 
</li>
 
<li><span style="font-weight: 400;">Digestion Conditions:</span>
 
<ul>
 
<li><span style="font-weight: 400;">&nbsp;</span></li>
 
</ul>
 
</li>
 
<li><span style="font-weight: 400;">Ligation Conditions:</span>
 
<ul>
 
<li><span style="font-weight: 400;">&nbsp;</span></li>
 
</ul>
 
</li>
 
<li><span style="font-weight: 400;">Transformation Protocol:</span></li>
 
</ul>
 
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<p><span style="font-weight: 400;">PCQuad:</span></p>
 
<ul>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">PCR Conditions</span>
 
<ul>
 
<li><span style="font-weight: 400;">&nbsp;</span></li>
 
</ul>
 
</li>
 
<li><span style="font-weight: 400;">Digestion Conditions:</span>
 
<ul>
 
<li><span style="font-weight: 400;">&nbsp;</span></li>
 
</ul>
 
</li>
 
<li><span style="font-weight: 400;">Ligation Conditions:</span>
 
<ul>
 
<li><span style="font-weight: 400;">&nbsp;</span></li>
 
</ul>
 
</li>
 
<li><span style="font-weight: 400;">Transformation Protocol:</span>
 
<ul>
 
<li>&nbsp;</li>
 
</ul>
 
</li>
 
</ul>
 
<h3>&nbsp;</h3>
 
<h3><strong>Colony PCR Conditions:</strong></h3>
 
 
<br></br>
 
 
<h3><strong>PCquad and O3-33 Expression and Purification</strong></h3>
 
<p><span style="font-weight: 400;">Growth and Pelleting:</span></p>
 
<ol>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">Inoculate 5 ml of cells in 37 C overnight</span></li>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">Incubate cells in larger flask(s) (1 - 4 L per batch) in 37 C until OD reaches 0.8</span></li>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">Add 0.5 mM IPTG (1 mL of 0.5 M stock per liter of cells)</span></li>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">Incubate cells in 30 C for 5 hrs</span></li>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">Aliquot cells into 50 mL Falcon tubes</span></li>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">Wash and pellet cells</span></li>
 
<ol>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">Centrifuge cells 4000g for 10 min</span></li>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">Dump out supernatant</span></li>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">Resuspend cells in 10 ml of cold water</span></li>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">Consolidate suspended pellets into fewer falcon tubes</span></li>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">Centrifuge&hellip; &nbsp;&nbsp;&nbsp;Repeat until all cells washed into a single tube</span></li>
 
</ol>
 
</ol>
 
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<p><span style="font-weight: 400;">Lysis and filtration:</span></p>
 
<ol>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">Resuspend cell pellet in lysis buffer (1 : 2 &nbsp;&nbsp;&nbsp;cell weight : ml of lysis buffer)</span></li>
 
<ol>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">PCQuad: 20mM sodium phosphate (ph=8.0), 300 mM sodium chloride, 10 mM imidazole</span></li>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">O3-33: 50 mM TRIS (ph=8.0), 250 mM NaCl, 20mM imidazole</span></li>
 
</ol>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">Chill cell suspension for 10 min</span></li>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">Add 10 uL 100 mM PMSF for every mL of cell suspension right before sonication</span></li>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">Sonicate cell suspension:for 10 sec (10 cycles; 30 sec pause between each cycle)</span></li>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">Centrifuge lysates for 30 min at 13000 rpm</span></li>
 
<li style="font-weight: 400;"><span style="font-weight: 400;">Filter supernatant through a 22 um Millipore filter</span></li>
 
</ol>
 
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
<p><span style="font-weight: 400;">Purification:</span></p>
+
<p>&nbsp;</p>
<ol>
+
<p>&nbsp;</p>
<li style="font-weight: 400;"><span style="font-weight: 400;">Used Hispur column purification protocol</span></li>
+
<p>&nbsp;</p>
<ol>
+
<p>&nbsp;</p>
<li style="font-weight: 400;"><span style="font-weight: 400;">Add appropriate amount of resin bed to purification column</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Equilibriate column with two resin bed volumes of equilibration buffer</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Add equal volume of equilibration buffer through filtered protein sample</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Add sample through column. Collect flow through and reapply through column. Save flow through for downstream analysis if desired</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Wash resin with two resin bed volumes of wash buffer with a gradient of imidazole concentrations until protein A280 reaches baseline Save flow through for downstream analysis if desired</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Elute protein with two resin bed volumes of elution buffer. Repeat elution. Save flow through for downstream analysis if desired</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Imidazole concentrations used:</span></li>
+
<ol>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">PCQuad</span></li>
+
<ol>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Equilibration: 20 mM</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">W1: 25 mM, W2:40 mM, W3: 150 mM</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">E1: 400 mM, E2: 400 mM</span></li>
+
</ol>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">O3-33</span></li>
+
<ol>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Equilibration: 20 mM</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">W1: 30 mM, W2: 40 mM, W3: 50 mM</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">E1: 400 mM, E2: 400 mM</span></li>
+
</ol>
+
</ol>
+
</ol>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Run SDS-PAGE on equilibration, three washes and two elutions</span></li>
+
<ol>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Mix samples with an equal volume of sample buffer (prepped with BME)</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Heat samples at 70 C for 10 min before loading into gel</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Use 1x SDS MOPS Running Buffer</span></li>
+
</ol>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Run Native-PAGE gel on best elutions</span></li>
+
<ol>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Use MOPS Running Buffer</span></li>
+
</ol>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Syringe filter 1 mL of best elutions through 0.22 um filter and use 30 uL for DLS</span></li>
+
</ol>
+
 
+
<br></br>
+
 
+
<h3><strong>Buffers Preparation Protocols:</strong></h3>
+
<p><span style="font-weight: 400;">O3-33:</span></p>
+
<ul>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Lysis buffer: 50 mM TRIS (ph=8.0), 250 mM NaCl, 20mM imidazole supplemented with 1 mM phenylmethanesulfonyl fluoride</span></li>
+
<ul>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">50 ml solution</span></li>
+
<ul>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">2.5 mL TRIS</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">0.7305 g NaCl</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">0.068 g imidazole</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">0.0087 g phenylmethanesulfonyl fluoride</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Up to 50 ml water</span></li>
+
</ul>
+
</ul>
+
</ul>
+
<p><span style="font-weight: 400;">PCQuad:</span></p>
+
<ul>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Lysis buffer: 20mM sodium phosphate (ph=8.0), 300 mM sodium chloride, 10 mM imidazole</span></li>
+
<ul>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">50 ml solution</span></li>
+
<ul>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">.164 g sodium phosphate</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">.877 g NaCl</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">.034 g imidazole</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Up to 50 ml water</span></li>
+
</ul>
+
</ul>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Lysis buffer supplemented with 500 mM imidazole(</span><strong>Elution)</strong></li>
+
<ul>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">50 ml solution</span></li>
+
<ul>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">1.702 g imidazole</span></li>
+
<li style="font-weight: 400;"><span style="font-weight: 400;">Up to 50 ml lysis buffer</span></li>
+
</ul>
+
</ul>
+
</ul>
+
  
 
   </div>
 
   </div>

Revision as of 07:01, 24 August 2016

EXPERIMENTS

P R O J E C T S

CDI

Protein Cages

Development of the Project

In order to test the expression of foreign CDI systems in DH5-α and Enterobacter aerogenes, we need to express each CDI system on a plasmid. We first received two recombinant E. coli strains from the Hayes lab located at the University of California, Santa Barbara: EPI100 with  pDAL930, containing the CDI system from EC869, and X90 with pDAL660, containing the CDI system from EC93. Our next objective was to transform electrocompetent DH5-α with pDAL930 and pDAL660 to see if we could express foreign CDI systems in DH5-α. We performed competition and aggregation assays on the transformed DH5-α, using the strains obtained from the Hayes lab as positive controls and ampicillin resistant DH5-α as a negative control. Assuming this is successful, we would move on to expressing two CDI systems derived from Enterobacter aerogenes in DH5-α individually and performing the same set of assays. These CDI systems must be isolated from genomic DNA and constructed into plasmids using Gibson assembly and overlap PCR. We plan on fusing the CdiA and CdiB genes from Enterobacter aerogenes with the CdiA-CT and CdiI genes of EC93, and inserting this chimeric construct into a pSC101-derived pSK33 backbone. Successful colonies are screened using CPCR and sequencing.

 

Protocols

 

Competition Assay

Purpose: verify inhibitor strain is properly expressing CDI system

Inhibitory strain (CDI+): bacterial strain transformed with designated CDI system

Target Strain (CDI-): native bacteria without immunity or bacteria containing appropriate receptor

Positive Control: strain confirmed to properly express the CDI system and can properly inhibit the target

Negative Control: the inhibitory strain lacking any CDI system

  1. At each mark, plate ten-fold serial dilutions in a M9 salt solution or SOC from 1:1 to 1:1,000,000
    1. Not all dilutions may be needed; determine experimentally
    2. Plate 100 µL of the culture on each plate
    3. Count CFUs per mL
      1. Count up the total number of colonies found on a plate
        1. Pick plates that are easily countable and do not exhibit lawn growth (30-300 colonies)
      2. Divide the total number of colonies by the dilution factor
  2. Incubate at 37 C at 225 rpm while plating at the 0 hour and 4 hour mark
  3. Grow all cells to correct growth phase in 50 mL Luria-Bertani (LB) at 37 C in shaking incubator
    1. Positive control to logarithmic phase (OD600 = ~ 0.35)
    2. Inhibitor to OD600 = 0.35
    3. Negative control to OD600 = 0.35
    4. Target to either logarithmic phase or stationary phase
  4. Mix inhibitor (or control) and target cell at a ratio of 10:1 (determined through concentration relation listed below) in LB without any antibiotic
    1. Multiply the Mass Attenuation Constant for your bacteria with the OD600 reading to get the cellular density of your culture. Use this to determine the 10:1 ratio of inhibitor to target cultures.
  5. Divide that value by the number of mLs plated to get CFUs/mL

 

 

Gibson Assembly

Purpose: Assemble a plasmid with DNA segments that originate from different sources

  1. Design forward and reverse primers for each fragment with homology regions between adjacent fragments

Number of fragments

Fragment Size

Length of overlap regions

1 – 2

≤ 8 kb

20 – 40 bp

8 – 32 kb

25 – 40 bp

3 – 5

≤ 8 kb

40 bp

8 – 32 kb

40 – 100 bp

 

  1. PCR amplify all the fragments using the primers you designed
  2. Run the fragments on a gel to verify that they are the correct products and gel extract
  3. Determine the concentration of each fragment
  4. Mix the fragments in equimolar ratios starting with the largest fragment (look at table below) into a PCR tube

Fragment size

Amount

Pmols

≤ 1 kb

20 – 40 ng

0.04

1 – 5 kb

10 – 25 ng

0.008 – 0.04

5 – 8 kb

25 ng

0.005 – 0.008

8 – 20 kb

25 – 100 ng

0.005 – 0.008

20 – 32 kb

100 ng

0.005

  1. Use the following formula to determine the amount of the subsequent fragments to add

 

(x) pmol = 1.55 * ( y ng)/(z bp)

 

  1. Fill up to 5 µL with dH2O
  2. Add 5 µL of Gibson Master Mix
  3. Incubate at 50 C for 1 h

 

 

Overlap PCR

Purpose: fuse two or more fragments of DNA using PCR (less efficient)

  1. PCR amplify the fragments
  2. Design PCR primers with 20 base pairs of homology
  3. Run product on a gel to confirm that you have the correct products
    1. Clean up the product
  4. Use the PCR products as template in a PCR reaction where the overlap regions will anneal on their own
    1. Do not use any primers in this step
    2. Run 15 cycles
  5. PCR amplify the fused fragments with the end primers that encapsulate both fragments

 

 

Colony PCR

Purpose: Determine if cells took up construct after transformation

  1. Take “x” number of colonies from a plate of bacteria and suspend them separately in 100 µL of dH2O
  2. Design primers that amplify a region contained in the target construct (surrounding homology region ideally)
    1. Regions of 200 – 500 bp are ideal
  3. Create a mastermix of forward primers, reverse primers, APEX mastermix, and dH2O
    1. The mastermix should be made for “x” number of reactions without the colony suspension added

Item

Amount

Forward Primer (10 µM)

0.5 µL

Reverse Primer (10 µM)

0.5 µL

Colony Suspension

1.0 µL

APEX mastermix

12.5 µL

dH2O

Up to 25 µL

  1. Add 1 µL of the colony suspension to 24 µL of the mastermix in a PCR tube and run the samples in a thermocycler
  2. Run the PCR products on a gel to determine if you have the correct construct

 

 

Electroporation of plasmids

  1. Load cuvette into electroporation apparatus and pulse
    1. Make sure arc time result is appropriate considering the cuvette used
  2. Transfer enough cells to cuvette (depends on the cuvette)
    1. Wipe condensation off the outside of the cuvette and tap the bottom of the housing on something solid to bring the cells to the bottom of the cuvette
  3. Add 1 µL of plasmid insert to cells
    1. Mix gently by flicking the bottom of the tube
  4. Start incubating 1 mL of SOC
  5. Take electro-competent cells and put them on ice for ten minutes (or until they have partially thawed)
  6. Put electroporation cuvettes on ice
  7. Add 970 µL of warm SOC to cuvette and pipet slowly up and down twice
  8. Load solution into a 1.5 mL micro-centrifuge tube and shake at 37 C and 800 rpm for 1 h
  9. Place plates with appropriate antibiotic into an incubator at 37 C
  10. After the hour is up, spin the cells down at 6000 rpm for 4 min
    1. Discard supernatant and suspend in 100 µL of SOC
  11. Plate using serial dilutions and incubate for desired length