Difference between revisions of "Team:Stanford-Brown/Software"

 
Line 5: Line 5:
 
<div class ="row">
 
<div class ="row">
  
We created a software program for automated protein optimization and gibson assembly primer design. When supplied a list of DNA or amino acid sequences representing proteins, the program will not only codon optimize the sequence for a user-defined species, but also remove any common restriction sites from the sequence. The program can also process multiple sequences, allowing the user to process a large number of sequences quickly and identifying which sequences have issues. Under the gibson assembly primer module, our program accepts a list of fragments to be stitched together, calculates the homology needed to gibson the fragments together, and designs primers for fragment homology PCR extension matching a user-defined melting temperature. These optimized protein DNA sequences or Gibson primers are then provided to the user in a text file. For ease of use, our program also reports errors and procedures in terminal and the output file. To see this work, please go to our software page <a href = "https://2016.igem.org/Team:Stanford-Brown/Software">here</a>.
+
We created a software program for automated protein optimization and gibson assembly primer design. When supplied a list of DNA or amino acid sequences representing proteins, the program will not only codon optimize the sequence for a user-defined species, but also remove any common restriction sites from the sequence. The program can also process multiple sequences, allowing the user to process a large number of sequences quickly and identifying which sequences have issues. Under the gibson assembly primer module, our program accepts a list of fragments to be stitched together, calculates the homology needed to gibson the fragments together, and designs primers for fragment homology PCR extension matching a user-defined melting temperature. These optimized protein DNA sequences or Gibson primers are then provided to the user in a text file. For ease of use, our program also reports errors and procedures in terminal and the output file. To see this work, please go to our software page <a href = "https://2016.igem.org/Team:Stanford-Brown/SB16_Software">here</a>.
 
</div>
 
</div>
  
 
</html>
 
</html>

Latest revision as of 03:56, 20 October 2016

We created a software program for automated protein optimization and gibson assembly primer design. When supplied a list of DNA or amino acid sequences representing proteins, the program will not only codon optimize the sequence for a user-defined species, but also remove any common restriction sites from the sequence. The program can also process multiple sequences, allowing the user to process a large number of sequences quickly and identifying which sequences have issues. Under the gibson assembly primer module, our program accepts a list of fragments to be stitched together, calculates the homology needed to gibson the fragments together, and designs primers for fragment homology PCR extension matching a user-defined melting temperature. These optimized protein DNA sequences or Gibson primers are then provided to the user in a text file. For ease of use, our program also reports errors and procedures in terminal and the output file. To see this work, please go to our software page here.