Difference between revisions of "Team:HUST-China"

 
(17 intermediate revisions by 4 users not shown)
Line 147: Line 147:
 
         list-style: none;
 
         list-style: none;
 
     }
 
     }
   
 
 
     </style>
 
     </style>
 
</head>
 
</head>
Line 153: Line 152:
 
<body>
 
<body>
 
     <header class="header">
 
     <header class="header">
<div class="navbar-logo">
+
        <div class="navbar-logo">
                <a class="navbar-brand" href="https://igem.org/Main_Page">
+
            <a class="navbar-brand" href="https://igem.org/Main_Page">
                    <img alt="Brand" src="https://2016.igem.org/wiki/skins/Igem/images/IGEM_white_letters.png">
+
                <img alt="Brand" src="https://2016.igem.org/wiki/skins/Igem/images/IGEM_white_letters.png">
                </a>
+
            </a>
    </div>
+
        </div>
    <div class="navbar-logo">
+
        <div class="navbar-logo">
                <a class="navbar-brand" href="https://2016.igem.org/Team:HUST-China">
+
            <a class="navbar-brand" href="https://2016.igem.org/Team:HUST-China">
                    <img alt="Brand" src="https://static.igem.org/mediawiki/2016/0/01/T--HUST-China--logo.png" style="left:100px;width:40px;">
+
                 <img alt="Brand" src="https://static.igem.org/mediawiki/2016/0/01/T--HUST-China--logo.png" style="left:100px;width:40px;">
                 </a>
+
            </a>
    </div>
+
        </div>
    <div class="navbar-logo">
+
        <nav class="navbar navbar-default">
                <a class="navbar-brand" href="https://igem.org/Main_Page">
+
                    <img alt="Brand" src="https://2016.igem.org/wiki/skins/Igem/images/IGEM_white_letters.png">
+
                </a>
+
    </div>
+
    <div class="navbar-logo">
+
                <a class="navbar-brand" href="https://2016.igem.org/Team:HUST-China">
+
                    <img alt="Brand" src="https://static.igem.org/mediawiki/2016/0/01/T--HUST-China--logo.png" style="left:100px;width:40px;">
+
                </a>
+
    </div>
+
    <nav class="navbar navbar-default">
+
 
             <!-- <div class="navbar-header"> -->
 
             <!-- <div class="navbar-header"> -->
 
             <!-- </div> -->
 
             <!-- </div> -->
           
 
 
             <div class="container">
 
             <div class="container">
 
                 <span class="menu">Menu</span>
 
                 <span class="menu">Menu</span>
Line 256: Line 244:
 
         <div class="container">
 
         <div class="container">
 
             <div class="work-header">
 
             <div class="work-header">
                 <h2 class="text-center">
+
                 <h2 class="text-center" style="width:390px;">
 
                     WHAT IS <span> SIGNAL FILTER ?</span>
 
                     WHAT IS <span> SIGNAL FILTER ?</span>
 
                 </h2>
 
                 </h2>
 
                 <p style="width:70%;margin-left:15%;font-size:17px;text-align:left;text-indent:34px;">
 
                 <p style="width:70%;margin-left:15%;font-size:17px;text-align:left;text-indent:34px;">
                    This year, we, HUST-China, design a functional gene expression toolkit. The systems we design can not only be adaptable to any input and output, but also can change its threshold to meet the requirements from different project purposes.
+
          This year, HUST-China designed a functional gene expression toolkit. The systems we designed can not only be adaptable to any input and output, but also be threshold-changable to meet the requirements of different project purposes.
 
                 </p>
 
                 </p>
 
             </div>
 
             </div>
Line 268: Line 256:
 
                     <img src="https://static.igem.org/mediawiki/2016/7/7e/T--HUST-China--Home-2-Box1.png" alt="" class="img-responsive">
 
                     <img src="https://static.igem.org/mediawiki/2016/7/7e/T--HUST-China--Home-2-Box1.png" alt="" class="img-responsive">
 
                     <!-- <h3 class="text-uppercase text-center">step 1</h3> -->
 
                     <!-- <h3 class="text-uppercase text-center">step 1</h3> -->
                     <p style="margin-top:10px">Normally, gene expression level depends on the input signals' intensity but it always cna't be strong enough, so it may be hard for former expression systems to deal with realistic problems.</p>
+
                     <p style="margin-top:10px">Normally, gene expression level depends on the input signals' intensity but it always can't be strong enough, so it may be hard for former expression systems to deal with realistic problems.</p>
 
                 </div>
 
                 </div>
 
                 <div class="col-md-2" style="padding-top:180px">
 
                 <div class="col-md-2" style="padding-top:180px">
Line 290: Line 278:
 
         <div class="container">
 
         <div class="container">
 
             <div class="work-header">
 
             <div class="work-header">
                 <h2 class="text-uppercase">
+
                 <h2 class="text-uppercase" style="width:390px">
 
                     WHY DO WE <span>USE IT ?</span>
 
                     WHY DO WE <span>USE IT ?</span>
 
                 </h2>
 
                 </h2>
                 <p style="width:70%;margin-left:15%;font-size:17px;text-align:left;text-indent:34px;">
+
                 <p style="width:100%;font-size:17px;text-align:left;text-indent:34px;">
                     With the development of synthetic biology,we may need to construct more complex circuits which has increased difficulty and consumes a lot of time and energy.To know the problems iGEMers encounter when constructing circuits,we carried out a survey and the result showed that all participants had ever been bothered by gene expression problems, such as lack of robustness and expression leakage,etc. As real-world conditions are more complex than lab, there will be various factors to interrupt the input signal and gene expression. Thus,decreasing noise of signal input, or in other words, filtering the input signal to guarantee stable gene product expression has crucial practical significance and that’s where our signal filter shows its capability.Moreover,it serves as a toolkit of gene switch,freeing researchers of the worry about complicated circuits and helps them focus on the key problems.
+
                     With the development of synthetic biology, we may need to construct more complex circuits which has increased difficulty and consumes a lot of time and energy. To know the problems iGEMers encounter when constructing circuits, we carried out a survey and the result showed that all participants had ever been bothered by gene expression problems, such as lack of robustness and expression leakage, etc. As real-world conditions are more complex than lab, there will be various factors to interrupt the input signal and gene expression. Thus, decreasing noise of signal input, or in other words, filtering the input signal to guarantee stable gene product expression has crucial practical significance and that’s where our signal filter shows its capability. Moreover, it serves as a toolkit of gene switch, freeing researchers of the worry about complicated circuits and helps them focus on the key problems.
 +
                    <br>
 +
                    <br>
 
                 </p>
 
                 </p>
 +
                <div class="row work-content">
 +
                    <div class="col-md-6 col-md-offset-3">
 +
                        <img src="https://static.igem.org/mediawiki/2016/0/03/T--HUST-China--Integrated-survey-3.png" alt="" class="img-responsive">
 +
                        <!-- <h3 class="text-uppercase text-center">step 1</h3> -->
 +
                       
 +
                    </div>
 +
                </div>
 
             </div>
 
             </div>
 
             <!-- introductions -->
 
             <!-- introductions -->
            <div class="row work-content">
 
                <div class="col-md-5">
 
                    <img src="https://static.igem.org/mediawiki/2016/7/7e/T--HUST-China--Home-2-Box1.png" alt="" class="img-responsive">
 
                    <!-- <h3 class="text-uppercase text-center">step 1</h3> -->
 
                    <p style="margin-top:10px">Normally, gene expression level depends on the input signals' intensity but it always cna't be strong enough, so it may be hard for former expression systems to deal with realistic problems.</p>
 
                </div>
 
                <div class="col-md-2" style="padding-top:180px">
 
                    <img src="https://static.igem.org/mediawiki/2016/a/a3/T--HUST-China--Home-2-modle.png" alt="" class="img-responsive">
 
                    <!-- <h3 class="text-uppercase text-center">step 2</h3> -->
 
                    <!-- <p>
 
                        Induced by electromagnetic field,magnetic receiver would be heated.
 
                    </p> -->
 
                </div>
 
                <div class="col-md-5">
 
                    <img src="https://static.igem.org/mediawiki/2016/c/cf/T--HUST-China--Home-2-Box2.png" alt="" class="img-responsive">
 
                    <!-- <h3 class="text-uppercase text-center">step 3</h3> -->
 
                    <p style="margin-top:10px">
 
                        Our toolkit can sense even pulse signal to reach its stable expression state and with validly characterized circuits, it will definitely help new iGEMers.
 
                    </p>
 
                </div>
 
            </div>
 
 
         </div>
 
         </div>
 
     </div>
 
     </div>
Line 328: Line 304:
 
                 </h2>
 
                 </h2>
 
                 <p style="width:70%;margin-left:15%;font-size:17px;text-align:left;text-indent:34px;">
 
                 <p style="width:70%;margin-left:15%;font-size:17px;text-align:left;text-indent:34px;">
                     This year, we, HUST-China, design a functional gene expression toolkit. The systems we design can not only be adaptable to any input and output, but also can change its threshold to meet the requirements from different project purposes.
+
                     We provide two versions of Signal Filter to meet different application requirements. The tri-stable circuit derived from bacteriaphage lambda can be applied in prokaryotic systems. Meanwhile,the bi-stable circuit adapted from ABA-response pathway in <italic>Arabidopsis thaliana<italic> is supposed to be used in eukaryotes. Following are brief introductions to our circuits:
 
                 </p>
 
                 </p>
 
             </div>
 
             </div>
Line 334: Line 310:
 
             <div class="row work-content">
 
             <div class="row work-content">
 
                 <div class="col-md-5">
 
                 <div class="col-md-5">
                     <img src="https://static.igem.org/mediawiki/2016/7/7e/T--HUST-China--Home-2-Box1.png" alt="" class="img-responsive">
+
                     <img src="https://static.igem.org/mediawiki/2016/8/88/T--HUST-China--Description-Fig-Eukaryote.png" alt="" class="img-responsive">
 
                     <!-- <h3 class="text-uppercase text-center">step 1</h3> -->
 
                     <!-- <h3 class="text-uppercase text-center">step 1</h3> -->
                     <p style="margin-top:10px">promoter RE can be activated by CII . Ftsh normally degrade CII, while CIII serves as an inhibitor of Ftsh to free CII. CI can function as an inhibitor to block pR, while Cro can block pRM. All of these parts and the interations between them can constitute three stable states and finally lead to different gene expressions.</p>
+
                     <p style="margin-top:10px">Promoter RE can be activated by CII . Ftsh normally degrade CII, while CIII serves as an inhibitor of Ftsh to free CII. CI can function as an inhibitor to block pR, while Cro can block pRM. All of these parts and the interations between them can constitute three stable states and finally lead to different gene expressions.</p>
 
                 </div>
 
                 </div>
 
                 <div class="col-md-2" style="padding-top:180px">
 
                 <div class="col-md-2" style="padding-top:180px">
                    <img src="https://static.igem.org/mediawiki/2016/a/a3/T--HUST-China--Home-2-modle.png" alt="" class="img-responsive">
 
 
                     <!-- <h3 class="text-uppercase text-center">step 2</h3> -->
 
                     <!-- <h3 class="text-uppercase text-center">step 2</h3> -->
 
                     <!-- <p>
 
                     <!-- <p>
Line 346: Line 321:
 
                 </div>
 
                 </div>
 
                 <div class="col-md-5">
 
                 <div class="col-md-5">
                     <img src="https://static.igem.org/mediawiki/2016/c/cf/T--HUST-China--Home-2-Box2.png" alt="" class="img-responsive">
+
                     <img src="https://static.igem.org/mediawiki/2016/1/1e/T--HUST-China--Description-Fig-prokaryote.png" alt="" class="img-responsive">
 
                     <!-- <h3 class="text-uppercase text-center">step 3</h3> -->
 
                     <!-- <h3 class="text-uppercase text-center">step 3</h3> -->
 
                     <p style="margin-top:10px">
 
                     <p style="margin-top:10px">
                      When signal 1 (ON) comes, promoter RD29A drives expression of SnRK2.2, which can phosphorylate a large quantity of ABF2 in a short time by enzyme catalysis , then enhance pRD29A to turn on the gene of interest's expression. When signal 2 (OFF) comes, gene PP2CA expresses, dephosphorylates ABF2 and inactivates SnRK2.2, thus turning the system into OFF state.
+
                        When signal 1 (ON) comes, promoter rd29A drives expression of SnRK2.2, which can phosphorylate a large quantity of ABF2 in a short time by enzyme catalysis , then enhance Prd29A to turn on the gene of interest's expression. When signal 2 (OFF) comes, gene PP2CA expresses, dephosphorylates ABF2 and inactivates SnRK2.2, thus turning the system into OFF state.
 
                     </p>
 
                     </p>
 
                 </div>
 
                 </div>
Line 355: Line 330:
 
         </div>
 
         </div>
 
     </div>
 
     </div>
 
+
    <div class="container-fluid how-work" style="background-color:#fff">
 
+
         <div class="container" style="height:50px;">
 
+
 
+
<div class="container-fluid how-work" style="background-color:#fff">
+
         <div class="container">
+
 
             <div class="work-header">
 
             <div class="work-header">
 
+
                <div class="text-uppercase">
<div class="text-uppercase">
+
                    <h2 style="width:400px;">MORE <span>GREAT </span>CONTENTS</h2>
                <h2>MORE <span>GREAT </span>CONTENTS
+
                 </div>
                </h2>
+
            </div>
                  
+
        </div>
       
+
    </div>
</div>
+
 
+
 
+
 
+
 
+
 
+
 
     <div class="container-fluid index-details1 index-details">
 
     <div class="container-fluid index-details1 index-details">
 
         <div id="myCarousel" class="carousel slide">
 
         <div id="myCarousel" class="carousel slide">
Line 381: Line 346:
 
                 <li data-target="#myCarousel" data-slide-to="1"></li>
 
                 <li data-target="#myCarousel" data-slide-to="1"></li>
 
                 <li data-target="#myCarousel" data-slide-to="2"></li>
 
                 <li data-target="#myCarousel" data-slide-to="2"></li>
               
 
 
             </ol>
 
             </ol>
 
             <!-- 轮播(Carousel)项目 -->
 
             <!-- 轮播(Carousel)项目 -->
Line 390: Line 354:
 
                             <div class="col-md-6" style="margin:100px 0">
 
                             <div class="col-md-6" style="margin:100px 0">
 
                                 <div class="caption">
 
                                 <div class="caption">
                             
 
 
                                     <p>
 
                                     <p>
                                         Small in scale, big in thoughts! This summer, we held a fabulous HUST-Cheering! conferrence. See more details in our Human Practices page. </p>
+
                                         Small in scale, big in thoughts! This summer, we held a fabulous HUST-Cheering! conference. See more details in our Human Practices page. </p>
 
                                     <p><a href="https://2016.igem.org/Team:HUST-China/Integrated_Practices" class="btn btn-primary" role="button">More details</a></p>
 
                                     <p><a href="https://2016.igem.org/Team:HUST-China/Integrated_Practices" class="btn btn-primary" role="button">More details</a></p>
 
                                 </div>
 
                                 </div>
Line 437: Line 400:
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 
 
             <!-- 轮播(Carousel)导航 -->
 
             <!-- 轮播(Carousel)导航 -->
             <a class="carousel-control left" href="#myCarousel" data-slide="prev" style="font-size:100px;color:#fff;">&lsaquo;</a>
+
             <a class="carousel-control left" href="#myCarousel" data-slide="prev" style="font-size:100px;color:#0a3c63;">&lsaquo;</a>
             <a class="carousel-control right" href="#myCarousel" data-slide="next" style="vertical-align:middle;font-size:100px;color:#fff;">&rsaquo;</a>
+
             <a class="carousel-control right" href="#myCarousel" data-slide="next" style="vertical-align:middle;font-size:100px;color:#0a3c63;">&rsaquo;</a>
 
         </div>
 
         </div>
 
     </div>
 
     </div>
    <!--    <div class="container-fluid index-details2 index-details">
 
        <div class="container">
 
            <h3 class="text-center index-headline index-headline2">Thermosensitive <span>Regulator</span></h3>
 
            <p class="text-center">For thermosensitive regulator,we chose RNA thermometer and designed a thermosensitive T7 RNA polymerase. </p>
 
            <div class="row">
 
                <div class="col-md-6">
 
                    <img src="images/index-li-image3.png" alt="" class="img-responsive">
 
                </div>
 
                <div class="col-md-6">
 
                    <div class="caption">
 
                        <p>
 
                            RNA thermometer is a structured RNA which could expose RBS only at appropriate temperature. In this session, we explored the measurement method to identify the efficiency of thermosensitive regulator under heat stress.
 
                        </p>
 
                        <p><a href="#" class="btn btn-primary" role="button">More details</a></p>
 
                    </div>
 
                </div>
 
            </div>
 
            <div class="row">
 
                <div class="col-md-6">
 
                    <div class="caption">
 
                        <p>
 
                            Thermosensitive T7 RNA polymerase is a normal T7 RNA polymerase at whose selected locus was inserted by a temperature-sensitive intein, which could self-splice at specific temperature.
 
                        </p>
 
                        <p><a href="#" class="btn btn-primary" role="button">More details</a></p>
 
                    </div>
 
                </div>
 
                <div class="col-md-6">
 
                    <img src="images/index-li-image2_15.png" alt="" class="img-responsive">
 
                </div>
 
            </div>
 
        </div>
 
    </div> -->
 
 
     <footer>
 
     <footer>
 
         <div class="container">
 
         <div class="container">

Latest revision as of 03:08, 20 October 2016

Team:HUST-China

WHAT IS SIGNAL FILTER ?

This year, HUST-China designed a functional gene expression toolkit. The systems we designed can not only be adaptable to any input and output, but also be threshold-changable to meet the requirements of different project purposes.

Normally, gene expression level depends on the input signals' intensity but it always can't be strong enough, so it may be hard for former expression systems to deal with realistic problems.

Our toolkit can sense even pulse signal to reach its stable expression state and with validly characterized circuits, it will definitely help new iGEMers.

WHY DO WE USE IT ?

With the development of synthetic biology, we may need to construct more complex circuits which has increased difficulty and consumes a lot of time and energy. To know the problems iGEMers encounter when constructing circuits, we carried out a survey and the result showed that all participants had ever been bothered by gene expression problems, such as lack of robustness and expression leakage, etc. As real-world conditions are more complex than lab, there will be various factors to interrupt the input signal and gene expression. Thus, decreasing noise of signal input, or in other words, filtering the input signal to guarantee stable gene product expression has crucial practical significance and that’s where our signal filter shows its capability. Moreover, it serves as a toolkit of gene switch, freeing researchers of the worry about complicated circuits and helps them focus on the key problems.

HOW DOES IT WORK ?

We provide two versions of Signal Filter to meet different application requirements. The tri-stable circuit derived from bacteriaphage lambda can be applied in prokaryotic systems. Meanwhile,the bi-stable circuit adapted from ABA-response pathway in Arabidopsis thaliana is supposed to be used in eukaryotes. Following are brief introductions to our circuits:

Promoter RE can be activated by CII . Ftsh normally degrade CII, while CIII serves as an inhibitor of Ftsh to free CII. CI can function as an inhibitor to block pR, while Cro can block pRM. All of these parts and the interations between them can constitute three stable states and finally lead to different gene expressions.

When signal 1 (ON) comes, promoter rd29A drives expression of SnRK2.2, which can phosphorylate a large quantity of ABF2 in a short time by enzyme catalysis , then enhance Prd29A to turn on the gene of interest's expression. When signal 2 (OFF) comes, gene PP2CA expresses, dephosphorylates ABF2 and inactivates SnRK2.2, thus turning the system into OFF state.

MORE GREAT CONTENTS