Difference between revisions of "Team:Tianjin/Protocol"

Line 60: Line 60:
 
       <div id="content" class="home blog single-author one-column content" role="main">
 
       <div id="content" class="home blog single-author one-column content" role="main">
  
 +
<!--------------------------------week1 start-------------------------------------------->
 
  <div id="Week1"></div>         
 
  <div id="Week1"></div>         
 
<article id="post-4252" class="post-4252 post type-post status-publish format-standard has-post-thumbnail hentry category-150 tag-174 tag-xinjiang tag-173">
 
<article id="post-4252" class="post-4252 post type-post status-publish format-standard has-post-thumbnail hentry category-150 tag-174 tag-xinjiang tag-173">
 
<header class="entry-header">
 
<header class="entry-header">
<div class="entry-title" align="center" >Protocol</div>
+
<div class="entry-title" align="center" >Notes For R-R system</div>
 
</header><!-- .entry-header -->
 
</header><!-- .entry-header -->
         <h1 class="entry-title">Plasmid Extraction</h1>
+
         <h1 class="entry-title">Week1(8/24/2016-8/30/2016)</h1>
 
<div class="entry-content">
 
<div class="entry-content">
 
                   <div class="note-content">
 
                   <div class="note-content">
 
 
We use the TIANprep Mini Plasmid Kit made by TIANGEN Biotech Co.,Ltd. to extract plasmid. Here is the protocol.<br/>
+
    <li>We used PCR to amplify the <b><i>CpxR</i></b> promoter and <b><i>RFP</i></b> gene from plasmid <b><i>pUC57</i></b>, and then we recycled the amplified fragment from the agarose gel. Then we used<b><i> Xba1</i></b> and <b><i>Pst1</i></b> enzymes to cut the plasmid <b><i>pUC19</i></b> and <b><i>CpxR-RFP</i></b> fragment. </li>
Add ethanol (96-100%) to Buffer PW before use, check bottle tag for the adding volume.<br/>
+
  <li>We linked the cut plasmid and<b><i> CpxR-RFP</i></b> fragment together and transformed the recombinant plasmid to <b><i>E.coli</i></b>.
1. Column equilibration: Place a Spin Column CP3 in a clean collection tube, and add 500 μl Buffer BL to CP3. Centrifuge for 1 min at 12,000 rpm (~13,400 × g) in a table-top microcentrifuge. Discard the flow-through, and put the Spin Column CP3 back into the collection tube. (Please use freshly treated spin column).<br/>
+
We used PCR to amplify the <b><i>PETase</i></b> gene and then recycled them from the agarose gel.</li>
2. Harvest 1-5 ml bacterial cells in a microcentrifuge tube by centrifugation at 12,000 rpm (~13,400 × g) in a conventional, table-top microcentrifuge for 1 min at room temperature (15-25°C), then remove all traces of supernatant by inverting the open centrifuge tube until all medium has been drained (For large volume of bacterial cells, please harvest to one tube by several centrifugation step.)<br/>
+
<li>We cultured the grown-up<b><i> E.coli</i></b> which had been transformed into recombinant <b><i>pUC19</i></b> into liquid LB+Amp culture medium overnight.</li>
3. Re-suspend the bacterial pellet in 250 μl Buffer P1 (Ensure that RNase A has been added). The bacteria should be resuspended completely by vortex or pipetting up and down until no cell clumps remain.<br/>
+
<li>We isolated the recombinant plasmid from the<b><i> E.coli</i></b> cultured last night. Then we use<b><i> Xba1</i></b> and <b><i>Pst1</i></b> enzyme to cut the plasmid to verify the plasmid was successfully constructed. The result was we succeeded.</li>
Note: No cell clumps should be visible after resuspension ofthe pellet, otherwise incomplete lysis will lower yield and purity.
+
<li>We cut the recombinant plasmid <b><i>pUC19</i></b> with enzyme<b><i> EcoR1</i></b> and <b><i>Sac1</i></b> and then we recycled it from the agarose gel. We stored the recycled product in -30℃ in order to wait for the <b><i>PETase</i></b> gene transformed into it.</li>
4. Add 250 μl Buffer P2 and mix gently and thoroughly by inverting the tube 6-8 times.<br/>
+
<li>In order to verify the inclusion body sensing effects of <b><i>CpxR</i></b> promoter, we selected a colony of <b><i>E.coli</i></b> with recombinant plasmid<b><i> pUC19</i></b> and cultured them in 37℃ for 6 hours and then rose the temperature to 42℃ and culture it overnight.</li>  
Note: Mix gently by inverting the tube. Do not vortex, as this will result in shearing of genomic DNA. If necessary, continue inverting the tube until the solution becomes viscous and slightly clear. Do not allow the lysis reaction to proceed for more than 5 min. If the lysate is still not clear, please reduce bacterial pellet.<br/>
+
<li>The result of the verification experiment last night was unsuccessful for there was only ultralow red fluorescence was detected, which was considered the basic expression of <b><i>RFP</i></b>.</li>          
5. Add 350 μl Buffer P3 and mix immediately and gently by inverting the tube 6-8 times. The solution should become cloudy. Centrifuge for 10 min at 12,000 rpm (~13,400 × g) in a table-top microcentrifuge.<br/>
+
<li>We redesigned the experiment and set 3 groups:<br/>
Note: To avoid localized precipitation, mix the solution thoroughly, immediately after addition of Buffer P3. If there is still white precipitation in the supernatant, please centrifuge again.<br/>
+
1. E.coli with standard <b><i>RFP</i></b> gene from our own laboratory.<br/>
6. Transfer the supernatant from step 5 to the Spin Column CP3 (place CP3 in a collection tube) by decanting or pipetting. Centrifuge for 30-60 s at 12,000 rpm (~13,400 × g). Discard the flow-through and set the Spin Column CP3 back into the Collection Tube.<br/>
+
2. E.coli with our recombinant plasmid<b><i> pUC19</i></b> and we cultured them in 37℃ all through.<br/>
7. (Optional, actually we hardly ever use) Wash the Spin Column CP3 by adding 500 μl Buffer PD and centrifuge for 30-60 s at 12,000 rpm (~13,400 × g). Discard the flow-through and put Spin Column CP3 back to the collection tube.<br/>
+
3. E.coli with our recombinant plasmid <b><i>pUC19</i></b> and we first cultured them in 37℃ and after 6 hours transferred them to 42℃.
This step is recommended to remove trace nuclease activity when using endA+ strains such as the JM series, HB101 and its derivatives, or any wild-type strain, which have high levels of nuclease activity or high carbohydrate content.<br/>
+
</li>        
8. Wash the Spin Column CP3 by adding 600 μl Buffer PW (ensure that ethanol (96%-100%) has been added) and centrifuge for 30-60 s at 12,000 rpm (~13,400 × g). Discard the flow-through, and put the Spin Colum CP3 back into the Collection Tube.<br/>
+
<li>The result was still unsuccessful for the 2nd and 3rd group showed ultralow red fluorescence and only 1st group showed high enough red fluorescence.</li>
9. Repeat Step 8.<br/>
+
<li>We redesigned the experiment again. We decided to transformed the recombinant plasmid <b><i>pUC19</i></b> and<b><i> pET21a</i></b> which was from the protein modification group and had <b><i>PETase</i></b> gene in it into<b><i> E.coli</i></b> at the same time.</li>
10. Centrifuge for an additional 2 min at 12,000 rpm (~13,400 × g) to remove residual wash Buffer PW.<br/>
+
<li>We cut the<b><i> pUC57</i></b> with enzyme <b><i>Xba1</i></b> and <b><i>Pst1</i></b> and recycled the skeleton part from the agarose gel.</li>
Note: Residual ethanol from Buffer PW may inhibit subsequent enzymatic reactions. We suggest open CP3 lid and stay at room temperature for a while to get rid of residual ethanol.<br/>
+
 
11. Place the Spin Column CP3 in a clean 1.5 ml microcentrifuge tube. To elute DNA, add 50-100 μl Buffer EB to the center of the Spin Column CP3, incubate for 2 min, and centrifuge for 2 min at 12,000 rpm (~13,400 × g).<br/>
+
Note: If the volume of eluted buffer is less than 50 μl, it may affect recovery efficiency. The pH value of eluted buffer will have some influence in eluting; Buffer EB or distilled water (pH 7.0-8.5) is suggested to elute plasmid DNA. For long-term storage of DNA, eluting in Buffer EB and storing at -20°C is recommended, since DNA stored in water is subject to acid hydrolysis. Repeat step 11 to increase plasmid recovery efficiency.
+
 
</div>
 
</div>
 
<a class="expand-btn">Show More</a>       
 
<a class="expand-btn">Show More</a>       
Line 100: Line 99:
 
    </article> #post-4252 -->
 
    </article> #post-4252 -->
  
 +
<!------------------------------------week1 end------------------------------------------------>
  
  
  
 
+
<!------------------------------------week2 start------------------------------------------------>
 
<div id="Week2"></div>
 
<div id="Week2"></div>
 
<article id="post-4252" class="post-4252 post type-post status-publish format-standard has-post-thumbnail hentry category-150 tag-174 tag-xinjiang tag-173">
 
<article id="post-4252" class="post-4252 post type-post status-publish format-standard has-post-thumbnail hentry category-150 tag-174 tag-xinjiang tag-173">
 
<header class="entry-header">
 
<header class="entry-header">
<h1 class="entry-title">DNA Purification</h1>
+
<h1 class="entry-title">Week2(8/31/2016-9/6/2016)</h1>
 
</header><!-- .entry-header -->
 
</header><!-- .entry-header -->
  
Line 113: Line 113:
 
 
 
<div class="note-content2">
 
<div class="note-content2">
We use the TIANquick Midi Purification Kit made by TIANGEN Biotech Co.,Ltd. to purify the DNA products of PCR and restriction endonuclease cutting. Here is the protocol.<br/>
+
<li>We linked the remained cut <b><i>CpxR-RFP</i></b> fragment into the skeleton and then transformed the recombinant <b><i>pUC57</i></b> and the <b><i>pET21a</i></b> into<b><i> E.coli</i></b> at the same time.</li>
Add ethanol (96-100%) to Buffer PW before use (see bottle label for volume).<br/>
+
1. Column equilibration: add 500 μl Buffer BL to the Spin Column CB2 (put Spin Column CB2 into a collection tube). Centrifuge for 1 min at 12,000 rpm (~13,400 × g). Discard the flow-through, and then place Spin Column CB2 back into the collection tube (please use freshly treated spin column).<br/>
+
2. Add 5 volumes of Buffer PB to 1 volume of the PCR reaction or enzymatic reaction and mix. It is not necessary to remove mineral oil or kerosene.<br/>
+
Note: For example, add 250 μl Buffer PB to 50 μl PCR reaction (not including oil).<br/>
+
3. Transfer the mixture to the Spin Column CB2, incubate at room temperature (15-25°C) for 2 min. Centrifuge for 30-60 s at 12,000 rpm (~13,400 × g) in a table-top microcentrifuge. Discard the flow-through, and then place Spin Column CB2 back into the same collection tube.<br/>
+
Note: The maximum loading volume of the column is 800 μl. For sample volumes greater than 800 μl simply load again.<br/>
+
4. Add 600 μl Buffer PW (ensure that ethanol (96-100%) has been added) to the Spin Column CB2 and centrifuge for 30-60 s at 12,000 rpm (~13,400 × g). Discard the flow-through, and place Spin Column CB2 back in the same collection tube.<br/>
+
Note: If the purified DNA is used for the subsequent salt sensitive experiments, such as ligation or sequencing experiment, it is suggested to stand for 2-5 min after adding Buffer PW, and then centrifuge.<br/>
+
5. Repeat step 4.<br/>
+
6. Centrifuge at 12,000 rpm (~13,400 × g) for 2 min to remove residual Buffer PW. Discard the flow-through, and allow the column to air dry with the cap open for several minutes to dry the membrane.<br/>
+
Note: Residual ethanol from Buffer PW may inhibit subsequent experiment (enzymatic or PCR reactions).<br/>
+
7. Place the Spin Column CB2 in a clean 1.5 ml microcentrifuge tube. Add 30-50 μl Buffer EB to the center of membrane, incubate for 2 min, and centrifuge for 2 min at 12,000 rpm (~13,400 × g).<br/>
+
Note: If the volume of eluted buffer is less than 30 μl, it may affect recovery efficiency. The pH value of eluted buffer will have big influence in eluting; distilled water (pH 7.0-8.5, adjusted with NaOH) is suggested to elute plasmid DNA, pH<7.0 will decrease elution efficiency. For long-term storage of DNA, eluting in Buffer EB and storing at -20°C is recommended, since DNA stored in water is subject to acid hydrolysis. Repeat step 7 to increase plasmid recovery efficiency.
+
  
 +
<li>The transformation last night turned to be a failure. We tried it again.</li>
 +
<li>The transformation last day seemed to be successful for the colonies were visible in LB+Amp plate. However, we use PCR to verify and it turned out that the fragment had not been linked into the plasmid.</li>
 +
<li>We finally gave up the former design and decided to link the<b><i> PETase</i></b> gene into the plasmid<b><i> pUC19</i></b>. However, we did not have the key enzyme <b><i>Sal1</i></b> so we started to construct the TPA positive feedback system.</li>
 +
<li>We first prepared the TPA standard solution (5g/L) for further use. Then we use PCR to amplify the <b><i>TPA-sensing leader sequence</i></b>,<b><i> PGK1 promoter</i></b>, <b><i>CYC1 terminator</i></b>, <b><i>RFP gene</i></b>, TPA regulation protein gene (<b><i>tpaR</i></b>), TPA transporting protein gene (<b><i>tpaK</i></b>). Then we cut the fragments above and plasmid <b><i>pRS413</i></b>, <b><i>pRS415</i></b>, and <b><i>pYES2</i></b> with corresponding enzymes and recycled the fragments from agarose gel.</li>
 +
<li>We linked the fragments together by this way:<br/>
 +
<b><i>1. pYES2-leader-PGK1-RFP.<br/>
 +
2. pRS413-PGK1-tpaK-CYC1.<br/>
 +
3. pRS415-PGK1-tpaR-CYC1</i></b>
 +
</li> 
 +
<li>Then we used PCR to verify the success and all of the plasmids were correctly constructed. Then we transformed the there plasmids into <b><i>Saccharomyces cerevisiae</i></b>.
 +
</li>
 +
<li>The key enzyme <b><i>Sal1</i></b> arrived and we isolate the plasmid <b><i>pET21a</i></b>. Then we use <b><i>BamH1</i></b> and <b><i>Sal1</i></b> to cut both plasmid and <b><i>PETase</i></b> gene, then linked them together and transformed the recombinant plasmid into <b><i>E.coli</i></b>.</li>
 
</div>
 
</div>
 
<a class="expand-btn2">Show More</a>
 
<a class="expand-btn2">Show More</a>
Line 141: Line 140:
 
          
 
          
  
 +
<!------------------------------------week2 end------------------------------------------------>
 +
  
 +
<!------------------------------------week3 start------------------------------------------------>
 
<div id="Week3"></div>
 
<div id="Week3"></div>
 
<article id="post-4252" class="post-4252 post type-post status-publish format-standard has-post-thumbnail hentry category-150 tag-174 tag-xinjiang tag-173">
 
<article id="post-4252" class="post-4252 post type-post status-publish format-standard has-post-thumbnail hentry category-150 tag-174 tag-xinjiang tag-173">
<h1 class="entry-title">Agarose Gel Electrophoresis Products Recycling</h1>
+
<h1 class="entry-title">Week3(9/7/2016-9/13/2016)</h1>
 
<div class="entry-content">
 
<div class="entry-content">
 
 
Line 152: Line 154:
  
  
We use the TIANgel Midi DNA Purification Kit made by TIANGEN Biotech Co.,Ltd. to recycle the DNA products from the agarose gel. Here is the protocol.<br/>
+
<li>We cultured the transformed<b><i> E.coli</i></b> and isolated the plasmid. Then we use PCR to amplify the whole fragment in <b><i>pET21a</i></b> from <b><i>T7 promoter</i></b> to <b><i>T7 terminator</i></b>. Then we recycled this fragment from agarose gel.</li>
Add ethanol (96-100%) to Buffer PW before use (see bottle label for volume).<br/>
+
<li>The transformed <b><i>Saccharomyces cerevisiae</i></b> had grown to visible colony in Sc-Ura-Leu-His plate. Then we use colony PCR to verify the plasmids had been transformed into the cells. The result is successful so that we streaked more plates.</li>
1. Column equilibration: add 500 μl Buffer BL to the Spin Column CA2 (put Spin Column CA2into a collection tube). Centrifuge for 1 min at 12,000 rpm (~13,400 × g) in a table-top microcentrifuge. Discard the flow-through, and put Spin Column CA2 back into the collection tube (please use freshly treated spin column).<br/>
+
<li>We cut the <b><i>T7 promoter-PETase gene-T7 terminator</i></b> fragment with enzymes <b><i>EcoR1</i></b> and <b><i>Sac1</i></b>. Then we linked it to the already cut plasmid <b><i>pUC19</i></b> (cut in August 28th). Then we transformed the recombinant plasmid into<b><i> E.coli</i></b>.</li>
2. Cut the DNA fragment from agarose gel with a clean, sharp scalpel. Weigh the gel slice in a clean tube. <br/>
+
<li>We cultured the transformed <b><i>Saccharomyces cerevisiae</i></b> into Sc-Ura-Leu-His culture medium in 30℃. We added TPA standard solution in this way:<br/>
3. Add equivalent volume of Buffer PN to the gel (If the gel is 0.1 g, it is defaulted to be 100 μl, then add 100 μl Buffer PN). Incubate at 50°C by inverting up and down the tube until the agarose gel dissolves completely. If the agarose gel does not dissolve completely, incubate for longer period or add additional Buffer PN until all the agarose gel dissolved completely (If the agarose gel is too large, please cut the agarose gel into several pieces in advance). <br/>
+
1. Group 1: did not add TPA.<br/>
Note: If DNA fragment is <300 bp, it is recommended to add isopropanol which is 1/2 volume of Buffer PN to the agarose gel sample after the gel completely dissolved. Cooling the solution at room temperature (15-25°C) and then add the solution to Spin Column CA2 since silica membrane of the column adsorbs DNA best at room temperature. <br/>
+
2. Group 2: added 1000μL TPA standard solution.<br/>
4. When the gel dissolved completely and the solution temperature turns to room temperature (15-25°C), transfer the mixture to the Spin Column CA2 (put Spin Column CA2into a collection tube). Let the column stand for 2 min at room temperature (15-25°C), then centrifuge for 30-60 s at 12,000 rpm (~13,400 × g) in a table-top microcentrifuge. Discard the flow-through; place the Spin Column CA2 back into the collection tube again. <br/>
+
3. Group 3: added 100μL TPA standard solution.<br/>
Note: The maximum loading volume of the column is 800 μl. For sample volumes greater than 800 μl simply load again.<br/>
+
4. Group 4: added 10μL TPA standard solution.<br/>
5. Wash the Spin Column CA2 with 600 μl Buffer PW (ensure that ethanol (96-100%) has been added) and centrifuge for 30-60 s at 12,000 rpm (~13,400 × g). Discard the flow-through and place the Spin Column CA2 back into the collection tube. <br/>
+
5.Group 5: added 1μL TPA standard solution.
Note: If the purified DNA is used for the salt sensitive experiments, such as direct sequencing and blunt-ended ligation, let the column stand for 2-5 min after adding Buffer PW, and then centrifuge. <br/>
+
</li>  
6. Repeat Step 5. <br/>
+
<li>We cultured the transformed <b><i>E.coli</i></b> into LB+Amp culture medium. Then add 1.5μL IPTG to induce the expression of <b><i>PETase</i></b> gene.</li>
7. Place the Spin Column CA2 back to the collection tube and centrifuge at 12,000 rpm (~13,400 × g) for 2 min to remove residual wash buffer. Discard the flow-through, and place column with the cap open for several minutes to air dry the membrane. <br/>
+
<li>We first detected the red fluorescence of <b><i>E.coli</i></b>, however, the experiment group had almost no increase of red fluorescence relative to control group. We changed the induction wavelength and scan the whole wavelength of emission, but we did not receive any result we expected.</li>
Note: Residual ethanol from Buffer PW will influence the subsequent enzymatic reaction (enzyme digestion, PCR etc). <br/>
+
<li>The TPA positive feedback system seemed to have minor effection for there were a little increment of red fluorescence of the 5th group relative to the 1st one.</li>
8. Transfer the Spin Column CA2 to a clean 1.5 ml microcentrifuge tube. Add appropriate volume of Buffer EB to the center of the membrane, incubate at room temperature (15-25°C) for 2 min, then centrifuge at 12,000 rpm (~13,400 × g) for 2 min. <br/>
+
<li>We doubted that it might be the<b><i> RFP</i></b> in the kit was useless. We isolated the <b><i>pET21a</i></b> and used PCR to amplify the <b><i>RFP </i></b>gene.</li>        
Note: The elution volume should not be less than 30 μl since smaller volume will affect recovery efficiency. The pH value of eluted buffer will affect eluting. If purified DNA is used for sequencing, it is recommended to choose ddH2O (pH 7.0-8.5) to elute DNA,    pH<7.0 will decrease the elution efficiency. Obtained DNA should be stored at -20°C to prevent degradation. Buffer (10 mM Tris-Cl, pH 8.0) could also be used for DNA elution. For higher yield, pipette the eluate to the center of the membrane again, incubate 2 min and centrifuge at 12,000 rpm (~13,400 × g) for 2 min.
+
<li>We cut the <b><i>RFP</i></b> gene and <b><i>pET21a</i></b> with enzymes <b><i>Xba1</i></b> and <b><i>Sac1</i></b>, then we linked them and transformed it into <b><i>E.coli</i></b>.</li>       
 +
<li>We cultured the transformed <b><i>E.coli</i></b> and added IPTG to induce the expression of<b><i> RFP</i></b>, and this time the red fluorescence was clear enough that could be seen directly.</li> 
 
   
 
   
 
</div>
 
</div>
Line 183: Line 186:
  
  
        
+
<!------------------------------------week3 end------------------------------------------------>       
 +
         
 +
 
 +
 
 +
 
 +
<!------------------------------------week4 start------------------------------------------------>        
 
<div id="Week4"></div>
 
<div id="Week4"></div>
 
<article id="post-4252" class="post-4252 post type-post status-publish format-standard has-post-thumbnail hentry category-150 tag-174 tag-xinjiang tag-173">
 
<article id="post-4252" class="post-4252 post type-post status-publish format-standard has-post-thumbnail hentry category-150 tag-174 tag-xinjiang tag-173">
<h1 class="entry-title">Agarose Gel Electrophoresis</h1>
+
<h1 class="entry-title">Week4(9/14/2016-9/20/2016)</h1>
 
<div class="entry-content">
 
<div class="entry-content">
 
 
Line 193: Line 201:
 
<div class="note-content4">
 
<div class="note-content4">
  
1. Preparation of TAE buffer: Add 242g Tris, 37.2g Na2EDTA·2H2O, 800mL ddH2O, after all the solute dissolve, add 57.1mL acetic acid and add ddH2O to make the total volume 1L.<br/>
+
<li>We started to construct another regulation way, the <b><i>E.coli</i></b> lysis regulation pathway. We first used colony PCR to obtain the <b><i>ddpX</i></b> gene from the <b><i>E.coli</i></b> genome and recycled the <b><i>ddpX</i></b> from the agarose gel.</li>
2. Preparation of sample: Add DNA loading buffer to the DNA solution according to the dilution ratio of particular buffer.<br/>
+
3. Preparation of agarose gel: Add agarose powder 10g/L, 1×TAE buffer 100mL (variable, according to need), heat the mixture by microwave oven until the agarose was dissolved. After the solution cool down to touchable temperature, add 50-100μL/L Goldenview Nucleic acid dye to the solution. Then pour the solution to the gel mould with gel comb inserted and wait for its concretion.<br/>
+
4. Add samples to the gel pore: After the formation of gel, pull out the gel comb and take the gel out of the mould. Immerge the gel with 1×TAE buffer in the electrophoresis chamber. Using pipette to add marker and samples to different pore. (The content of pore depends on the gel comb, there are 3 kinds of volume, 10μL, 20μL, and 50μL) Do not stick the bottom and side of gel pore to prevent the leakage. <br/>
+
5. Turn on the electrical source to start the electrophoresis, the voltage is set at 150-160V and the electrophoresis time is set at 8-12min.<br/>
+
6. After the electrophoresis process end, the gel is observed under blue light or ultraviolet.
+
  
 +
<li>We found that there was no enzyme cleavage site between the<b><i> CpxR</i></b> promoter and <b><i>RFP</i></b> gene in the part we use. We had to design the primers and amplified the <b><i>CpxR</i></b> promoter by PCR.</li>
 +
<li>We used PCR to amplify the<b><i> CpxR</i></b> promoter. Then we recycled it from agarose gel.</li>
 +
<li>We cut the<b><i> CpxR</i></b> promoter with enzymes <b><i>Xba1</i></b> and<b><i> BamH1</i></b>, <b><i>ddpX</i></b> gene with enzymes <b><i>BamH1</i></b> and<b><i> EcoR1</i></b>, first batch of <b><i>pET21a</i></b> with<b><i> Xba1</i></b> and<b><i> EcoR1</i></b>, second batch of <b><i>pET21a</i></b> with<b><i> BamH1</i></b> and <b><i>EcoR1</i></b>.</li>
 +
<li>Then we linked these fragment in the following two ways:<br/>
 +
<b><i>1. pET21a-CpxR-ddpX.<br/>
 +
2. pET21a-ddpX.</i></b>
 +
</li>           
 
          
 
          
  
Line 214: Line 224:
 
          
 
          
  
 +
<!------------------------------------week4 end------------------------------------------------>
 +
 +
 +
 +
 +
<!------------------------------------week5 start------------------------------------------------>
 
<div id="Week5"></div>
 
<div id="Week5"></div>
 
<article id="post-4252" class="post-4252 post type-post status-publish format-standard has-post-thumbnail hentry category-150 tag-174 tag-xinjiang tag-173">
 
<article id="post-4252" class="post-4252 post type-post status-publish format-standard has-post-thumbnail hentry category-150 tag-174 tag-xinjiang tag-173">
<h1 class="entry-title">Restriction Endonuclease Digestion</h1>
+
<h1 class="entry-title">Week5(9/21/2016-9/27/2016)</h1>
 
<div class="entry-content">
 
<div class="entry-content">
 
 
Line 222: Line 238:
 
<div class="note-content5">
 
<div class="note-content5">
  
Prepare the system:
+
<li>We used PCR to amplify the whole fragments in<b><i> pET21a</i></b> (from <b><i>CpxR </i></b>to <b><i>T7 terminator</i></b>). However, the band in the agarose gel was disperse so that we were unable to recycle it.</li>
<li>Total volume: 50μL</li>
+
 
<li>Restriction endonuclease: 2μL respectively</li>
+
<li>We used colony PCR to verify if the <b><i>pET21a</i></b> had been correctly constructed, the result is yes.</li>
<li>10×Cut Smart Buffer: 5μL</li>
+
<li>We changed the DNA polymerase and annealing temperature several times and redid the PCR, however, the disperse band were always existed.</li>
<li>DNA to be cut: 30μL</li>
+
<li>We cultured the <b><i>E.coli</i></b> transformed into the <b><i>pET21a-ddpX</i></b> fragment and detect the OD600 in order to verify the lysis effection of <b><i>ddpX</i></b>. </li>
<li>ddH2O: 13μL</li>
+
<li>Considering the <b><i>pYES2</i></b> is multicopy plasmid so that the copy number would affect the <b><i>RFP</i></b> expression level, we decided to change the <b><i>pYES2</i></b> to single-copy plasmid <b><i>pRS416</i></b>. Since the <b><i>pRS416</i></b> does not have terminator in its backbone, we used PCR to amplify the <b><i>CYC1</i></b> terminator from plasmid <b><i>pYES2</i></b>.</li>          
<br/>
+
<li>We cut the <b><i>pYES2</i></b> with enzyme <b><i>Hind3</i></b> and <b><i>EcoR1</i></b>, <b><i>CYC1</i></b> with<b><i> EcoR1</i></b> and <b><i>Sal1</i></b>,<b><i> pRS416</i></b> with <b><i>Hind3</i></b> and<b><i> Sal1</i></b>. Then we linked the three part together.</li>      
<li>Reaction time: 2h</li>
+
<li>We transformed the three plasmids into <b><i>Saccharomyces cerevisiae</i></b> together. </li>
<li>Reaction temperature: 37℃</li>
+
<li>The new primers using to amplify the<b><i> CpxR-ddpX-T7</i></b> terminator fragment arrived and we redid the PCR. However, the disperse band was still existed. </li>
 +
<li>The transformation of Saccharomyces cerevisiae turned out to be a failure because no colony was found on the Sc-Ura-Leu-His plate. </li>
 
        
 
        
 
          
 
          
Line 248: Line 265:
  
  
        
+
<!------------------------------------week5 end------------------------------------------------>
 +
 +
 +
 
 +
<!------------------------------------week6 start------------------------------------------------>        
 
  <div id="Week6"></div>
 
  <div id="Week6"></div>
 
         <article id="post-4252" class="post-4252 post type-post status-publish format-standard has-post-thumbnail hentry category-150 tag-174 tag-xinjiang tag-173">
 
         <article id="post-4252" class="post-4252 post type-post status-publish format-standard has-post-thumbnail hentry category-150 tag-174 tag-xinjiang tag-173">
 
<header class="entry-header">
 
<header class="entry-header">
<h1 class="entry-title">DNA Fragments Ligation</h1>
+
<h1 class="entry-title">Week6(9/28/2016-10/2/2016)</h1>
 
</header><!-- .entry-header -->
 
</header><!-- .entry-header -->
  
Line 260: Line 281:
 
<div class="note-content6">
 
<div class="note-content6">
  
Prepare the system:
+
<li>We redid the inclusion body reporting experiment, and this time we directly observed the color of bacterial after centrifugation (12000rpm, 1min). The group with <b><i>PETase</i></b> gene and <b><i>CpxR-RFP</i></b> fragment showed the deepest red.</li>
<li>Total volume: 20μL</li>
+
<li>T4 DNA ligase: 1μL </li>
+
<li>5×Ligase Buffer: 4μL</li>
+
<li>DNA to be linked: (c1V1/L1): (c2V2/L2)=5:1. (c1: Concentration of cut DNA fragments; c2: Concentration of cut plasmid; V1: Volume of cut DNA fragments; V2: Volume of cut plasmid; L1: Length of cut DNA fragments; L2: Length of cut plasmid)</li>
+
<li>ddH2O: add to make the total volume 20μL</li>
+
<br/>
+
<li>Reaction time: 2h</li>
+
<li>Reaction temperature: 22℃</li>
+
 
+
  
 
        
 
        
Line 278: Line 290:
  
 
</div><!-- .entry-content -->
 
</div><!-- .entry-content -->
 
 
<div id="Week7"></div>
 
        <article id="post-4252" class="post-4252 post type-post status-publish format-standard has-post-thumbnail hentry category-150 tag-174 tag-xinjiang tag-173">
 
<header class="entry-header">
 
<h1 class="entry-title">PCR</h1>
 
</header><!-- .entry-header -->
 
 
<div class="entry-content">
 
 
<div class="note-content7">
 
 
Prepare the system:
 
<li>Total volume: 50μL</li>
 
<li>Q5 DNA Polymerase: 0.5μL</li>
 
<li>5×Q5 DNA Polymerase Buffer: 10μL</li>
 
<li>Template: 1μL</li>
 
<li>dNTP: 1μL</li>
 
<li>Primer: Sense Primer and Anti-sense Primer, respectively 2.5μL</li>
 
<li>ddH2O: 32.5μL</li>
 
<br/>
 
<li>Cycles: 25-35</li>
 
<li>Pre-denaturation: 98℃,30s;</li>
 
<li>Denaturation: 98℃,5-10s;</li>
 
<li>Annealing: Depend on the primers, generally 45-65℃,10-30s;</li>
 
<li>Extension: 72℃,20-30s/kb</li>
 
<li>Fully extension: 72℃,2min</li>
 
<li>Product Storage: 4℃</li>
 
<li>Note: Different DNA polymerase has different protocol, this is only the case of Q5 DNA polymerase.</li>
 
 
 
 
 
     
 
       
 
 
</div>
 
<a class="expand-btn7">Show More</a>
 
 
</div><!-- .entry-content -->
 
 
  
 
 
Line 324: Line 295:
 
 
  
 
+
<!------------------------------------week6 end------------------------------------------------>
  
  
Line 484: Line 455:
  
 
         </script>
 
         </script>
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn7' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content7' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn8' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content8' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn9' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content9' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn10' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content10' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn11' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content11' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn12' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content12' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn13' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content13' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn14' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content14' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn15' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content15' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn16' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content16' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn17' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content17' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn18' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content18' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn19' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content19' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn20' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content20' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn21' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content21' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn22' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content22' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn23' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content23' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn24' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content24' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn25' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content25' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn26' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content26' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn27' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content27' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn28' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content28' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn29' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content29' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
<script>  /* show more */
 
 
      $(document).ready(function() {
 
  $( '.expand-btn30' ).click(function() {
 
var $text = $(this).html();
 
$(this).siblings( '.note-content30' ).toggle();
 
if( $text === 'Show More' ) {
 
$(this).html( 'Show Less' );
 
} else {
 
$(this).html( 'Show More' );
 
}
 
});
 
});
 
 
        </script>
 
 
  
 
          
 
          

Revision as of 13:15, 4 October 2016

TEAM TIANJIN


Team Tianjin-Attribution

Notes For R-R system

Week1(8/24/2016-8/30/2016)

  • We used PCR to amplify the CpxR promoter and RFP gene from plasmid pUC57, and then we recycled the amplified fragment from the agarose gel. Then we used Xba1 and Pst1 enzymes to cut the plasmid pUC19 and CpxR-RFP fragment.
  • We linked the cut plasmid and CpxR-RFP fragment together and transformed the recombinant plasmid to E.coli. We used PCR to amplify the PETase gene and then recycled them from the agarose gel.
  • We cultured the grown-up E.coli which had been transformed into recombinant pUC19 into liquid LB+Amp culture medium overnight.
  • We isolated the recombinant plasmid from the E.coli cultured last night. Then we use Xba1 and Pst1 enzyme to cut the plasmid to verify the plasmid was successfully constructed. The result was we succeeded.
  • We cut the recombinant plasmid pUC19 with enzyme EcoR1 and Sac1 and then we recycled it from the agarose gel. We stored the recycled product in -30℃ in order to wait for the PETase gene transformed into it.
  • In order to verify the inclusion body sensing effects of CpxR promoter, we selected a colony of E.coli with recombinant plasmid pUC19 and cultured them in 37℃ for 6 hours and then rose the temperature to 42℃ and culture it overnight.
  • The result of the verification experiment last night was unsuccessful for there was only ultralow red fluorescence was detected, which was considered the basic expression of RFP.
  • We redesigned the experiment and set 3 groups:
    1. E.coli with standard RFP gene from our own laboratory.
    2. E.coli with our recombinant plasmid pUC19 and we cultured them in 37℃ all through.
    3. E.coli with our recombinant plasmid pUC19 and we first cultured them in 37℃ and after 6 hours transferred them to 42℃.
  • The result was still unsuccessful for the 2nd and 3rd group showed ultralow red fluorescence and only 1st group showed high enough red fluorescence.
  • We redesigned the experiment again. We decided to transformed the recombinant plasmid pUC19 and pET21a which was from the protein modification group and had PETase gene in it into E.coli at the same time.
  • We cut the pUC57 with enzyme Xba1 and Pst1 and recycled the skeleton part from the agarose gel.
  • Show More

    Week2(8/31/2016-9/6/2016)

  • We linked the remained cut CpxR-RFP fragment into the skeleton and then transformed the recombinant pUC57 and the pET21a into E.coli at the same time.
  • The transformation last night turned to be a failure. We tried it again.
  • The transformation last day seemed to be successful for the colonies were visible in LB+Amp plate. However, we use PCR to verify and it turned out that the fragment had not been linked into the plasmid.
  • We finally gave up the former design and decided to link the PETase gene into the plasmid pUC19. However, we did not have the key enzyme Sal1 so we started to construct the TPA positive feedback system.
  • We first prepared the TPA standard solution (5g/L) for further use. Then we use PCR to amplify the TPA-sensing leader sequence, PGK1 promoter, CYC1 terminator, RFP gene, TPA regulation protein gene (tpaR), TPA transporting protein gene (tpaK). Then we cut the fragments above and plasmid pRS413, pRS415, and pYES2 with corresponding enzymes and recycled the fragments from agarose gel.
  • We linked the fragments together by this way:
    1. pYES2-leader-PGK1-RFP.
    2. pRS413-PGK1-tpaK-CYC1.
    3. pRS415-PGK1-tpaR-CYC1
  • Then we used PCR to verify the success and all of the plasmids were correctly constructed. Then we transformed the there plasmids into Saccharomyces cerevisiae.
  • The key enzyme Sal1 arrived and we isolate the plasmid pET21a. Then we use BamH1 and Sal1 to cut both plasmid and PETase gene, then linked them together and transformed the recombinant plasmid into E.coli.
  • Show More

    Week3(9/7/2016-9/13/2016)

  • We cultured the transformed E.coli and isolated the plasmid. Then we use PCR to amplify the whole fragment in pET21a from T7 promoter to T7 terminator. Then we recycled this fragment from agarose gel.
  • The transformed Saccharomyces cerevisiae had grown to visible colony in Sc-Ura-Leu-His plate. Then we use colony PCR to verify the plasmids had been transformed into the cells. The result is successful so that we streaked more plates.
  • We cut the T7 promoter-PETase gene-T7 terminator fragment with enzymes EcoR1 and Sac1. Then we linked it to the already cut plasmid pUC19 (cut in August 28th). Then we transformed the recombinant plasmid into E.coli.
  • We cultured the transformed Saccharomyces cerevisiae into Sc-Ura-Leu-His culture medium in 30℃. We added TPA standard solution in this way:
    1. Group 1: did not add TPA.
    2. Group 2: added 1000μL TPA standard solution.
    3. Group 3: added 100μL TPA standard solution.
    4. Group 4: added 10μL TPA standard solution.
    5.Group 5: added 1μL TPA standard solution.
  • We cultured the transformed E.coli into LB+Amp culture medium. Then add 1.5μL IPTG to induce the expression of PETase gene.
  • We first detected the red fluorescence of E.coli, however, the experiment group had almost no increase of red fluorescence relative to control group. We changed the induction wavelength and scan the whole wavelength of emission, but we did not receive any result we expected.
  • The TPA positive feedback system seemed to have minor effection for there were a little increment of red fluorescence of the 5th group relative to the 1st one.
  • We doubted that it might be the RFP in the kit was useless. We isolated the pET21a and used PCR to amplify the RFP gene.
  • We cut the RFP gene and pET21a with enzymes Xba1 and Sac1, then we linked them and transformed it into E.coli.
  • We cultured the transformed E.coli and added IPTG to induce the expression of RFP, and this time the red fluorescence was clear enough that could be seen directly.
  • Show More

    Week4(9/14/2016-9/20/2016)

  • We started to construct another regulation way, the E.coli lysis regulation pathway. We first used colony PCR to obtain the ddpX gene from the E.coli genome and recycled the ddpX from the agarose gel.
  • We found that there was no enzyme cleavage site between the CpxR promoter and RFP gene in the part we use. We had to design the primers and amplified the CpxR promoter by PCR.
  • We used PCR to amplify the CpxR promoter. Then we recycled it from agarose gel.
  • We cut the CpxR promoter with enzymes Xba1 and BamH1, ddpX gene with enzymes BamH1 and EcoR1, first batch of pET21a with Xba1 and EcoR1, second batch of pET21a with BamH1 and EcoR1.
  • Then we linked these fragment in the following two ways:
    1. pET21a-CpxR-ddpX.
    2. pET21a-ddpX.
  • Show More

    Week5(9/21/2016-9/27/2016)

  • We used PCR to amplify the whole fragments in pET21a (from CpxR to T7 terminator). However, the band in the agarose gel was disperse so that we were unable to recycle it.
  • We used colony PCR to verify if the pET21a had been correctly constructed, the result is yes.
  • We changed the DNA polymerase and annealing temperature several times and redid the PCR, however, the disperse band were always existed.
  • We cultured the E.coli transformed into the pET21a-ddpX fragment and detect the OD600 in order to verify the lysis effection of ddpX.
  • Considering the pYES2 is multicopy plasmid so that the copy number would affect the RFP expression level, we decided to change the pYES2 to single-copy plasmid pRS416. Since the pRS416 does not have terminator in its backbone, we used PCR to amplify the CYC1 terminator from plasmid pYES2.
  • We cut the pYES2 with enzyme Hind3 and EcoR1, CYC1 with EcoR1 and Sal1, pRS416 with Hind3 and Sal1. Then we linked the three part together.
  • We transformed the three plasmids into Saccharomyces cerevisiae together.
  • The new primers using to amplify the CpxR-ddpX-T7 terminator fragment arrived and we redid the PCR. However, the disperse band was still existed.
  • The transformation of Saccharomyces cerevisiae turned out to be a failure because no colony was found on the Sc-Ura-Leu-His plate.
  • Show More

    Week6(9/28/2016-10/2/2016)

  • We redid the inclusion body reporting experiment, and this time we directly observed the color of bacterial after centrifugation (12000rpm, 1min). The group with PETase gene and CpxR-RFP fragment showed the deepest red.
  • Show More
    info_outline
    Notice: This page is currently under construction. Contents in this page are temporaory and will be modified several times before the final release.     — 2016 iGEM Team Tianjin

    Team Tianjin Sponsor Alltech
    Team Tianjin Sponsor GenScript
    Team Tianjin Sponsor SynbioTech