Difference between revisions of "Team:Tianjin/Experiment/6803"

 
(52 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
{{:Team:Tianjin/Templates/AddCSS|:Team:Tianjin/Experiment/R-R/style.css}}
 
{{:Team:Tianjin/Templates/AddCSS|:Team:Tianjin/Experiment/R-R/style.css}}
 
{{:Team:Tianjin/Templates/AddCSS|:Team:Tianjin/Community/css/bootstrap.css}}
 
{{:Team:Tianjin/Templates/AddCSS|:Team:Tianjin/Community/css/bootstrap.css}}
{{:Team:Tianjin/Templates/AddCSS|:Team:Tianjin/Community/css/font.css}}
 
{{:Team:Tianjin/Templates/AddCSS|:Team:Tianjin/Community/css/animation.css}}
 
{{:Team:Tianjin/Templates/AddCSS|:Team:Tianjin/Community/css/animate.css}}
 
  
 
<html>
 
<html>
Line 44: Line 41:
 
<!-- <div class="row">  -->
 
<!-- <div class="row">  -->
 
<div class="col-md-12">
 
<div class="col-md-12">
<h1 id="about" class="title text-center">Experiment of <span>Modified Cyanobacteria:A Controllable Lipid Producer</span></h1>
+
<h2 id="about" class="title text-center">Experiment of <span>A Controllable Lipid Producer</span></h2>
 
<h2><b>Overview</b></h2>
 
<h2><b>Overview</b></h2>
<p style="font-size:18px">R-R system (namely reporting and regulation system), is used in our project in order to make the expression of PET degrading enzyme visible and regular. As its name implies, this system consists of two independent part, reporting and regulation. We test our reporting part in <i>E.coli</i> and regulation part in <i>Saccharomyces cerevisiae</i> .</p>
+
<p style="font-size:18px">Cyanobacteria are excellent organisms for biofuel production. We thus have selected Cyanobacterium <i>Synechocystis sp. PCC 6803</i> as the source of carbon in our mixed bacteria system. Our target is simply to make the cyanobacteria lyse at the appropriate time by transforming a plasmid contained three bacteriophage-derived lysis genes which were placed downstream of a nickel-inducible signal transduction system into the <i>Synechocystis 6803</i>.</p>
  
 
 
Line 52: Line 49:
 
<div class="col-md-3">
 
<div class="col-md-3">
 
<br/><br/><br/><br/>
 
<br/><br/><br/><br/>
<img src="https://static.igem.org/mediawiki/2016/3/32/T--Tianjin--R-R_system1.jpg" alt="desktop">
+
<img src="https://static.igem.org/mediawiki/2016/9/9f/Igem-6803-e1.png" alt="desktop">
<br/><p style="font-size:15px">Fig.1. Structure of part <i><i>BBa_K339007</i></i></p>
+
<p style="font-size:15px">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Fig.1. Lipid contents</p>
<div class="space"></div>
+
 
</div>
 
</div>
 
<div class="col-md-9">
 
<div class="col-md-9">
<h3><b>1. Reporting System</b></h3>
+
<h3><b id="LipidProducer">1. Lipid Producer</b></h3>
<p style="font-size:18px">The basis of our reporting system is the part <i><i>BBa_K339007</i></i>, Designed by Emily Hicks from Group iGEM10_Calgary. This part can sense the CpxR protein, which will form spontaneously in <i>E.coli</i> when inclusion body and misfolding protein present in the periplasm of <i>E.coli</i>, and then start expressing RFP so that we can detect red fluorescence. As we all know, the inclusion body will inevitably form when we overexpress heterologous protein like PETase in <i>E.coli</i>. Therefore, the emission of red fluorescence can report the overexpression of PETase. What is more, this device can be modified to report overexpression of any heterologous protein only if the PETase gene is replaced by another heterologous gene. After the red fluorescence is detected, we could start the purification of protein.</p>
+
<p style="font-size:18px">Photosynthetic microorganisms, including eukaryotic algae and cyanobacteria, are being optimized to overproduce numerous biofuel. According to previous data, algae accumulate large quantities of lipid as storage materials, but they do this when under stress and growing slowly. By contrast, cyanobacteria accumulate lipids in thylakoid membranes, which are associated with high levels of photosynthesis and a rapid growth rate. Thus, photo-synthetic bacteria have a natural advantage for producing lipids at a high rate. Furthermore, being prokaryotes can be improved by genetic manipulations much more readily than can eukaryotic algae. (Espaux L et al. 2015) Therefore, we decided to do something to make cyanobacteria ,the lipid producer, more appropriate for our project.</p>
 
 
 
</div>
 
</div>
Line 67: Line 64:
 
 
 
 
<div class="col-md-8">
+
<div class="col-md-12">
 +
 
 +
<p style="font-size:18px"><i>Synechococcus elongatus PCC7942</i> has larger capacity of lipid production than <i>Synechocystis sp. PCC6803</i> but accumulates most of the product in the cell because of the imbalance of the rates of lipid production and secretion. Initially, we intended to do something to increase lipid secretion by knocking the <i>wzt</i> gene(Akihiro Kato et al. 2016), however, <i>Synechococcus elongatus PCC7942</i> wasn’t able to revive in two-week shaking cultivation. So we turned into <i>Synechocystis sp.PCC 6803</i>.</p>
 +
 
 +
 +
 
  
<img src="https://static.igem.org/mediawiki/2016/9/96/T--Tianjin--R-R_system2.jpg" alt="desktop">
 
<p style="font-size:15px">
 
<br/>
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Fig.2. Brief Structure of our reporting system based on inclusion body sensing CpxR promoter
 
</p>
 
  
 
<div class="col-md-2"></div>
 
<div class="col-md-2"></div>
Line 85: Line 82:
 
<div class="row">
 
<div class="row">
 
<div class="col-md-5">
 
<div class="col-md-5">
<h3><b>2. Cell Lysis Based Regulation System</b></h3>
+
<h3><b class="LipidRecoveryFromBiomass">2.Lipid Recovery From Biomass</b></h3>
<br/> <p style="font-size:18px">The regulation system consists of two section. The first section is based on the already mentioned reporting system. We change the RFP gene to the novel ddpX (D-alanyl-D-alanine dipeptidase) gene from <i>E.coli</i> genome. The ddpX gene can hydrolyze the D-Ala-D-Ala structure in peptidoglycan molecule and cause damage to the cell wall of <i>E.coli</i>. Under normal condition, this gene only express when the cell is in starvation mode in order to use hydrolysate alanine as carbon source. However, if we overexpress this gene, the cell wall will be dissolved and finally cell lysis will happen. Therefore, in this system, when the PETase is overexpressed, the spontaneously forming inclusion body will induce the expression of ddpX and cause cell lysis. It will provide us with a novel and convenient and way of protein purification when you use <i>E.coli</i> as chassis.</p>
+
<br/> <p style="font-size:18px">The first goal of our research was to facilitate lipid recovery from biomass. The scientific community widespread disrupts the cyanobacterial cell envelope to achieve the goal. (Seog JL et al. 1998)However, all these methods are not economical for large amounts of biomass or add additional cost and reduce the overall utility of the process. Our target is simply to make the cyanobacteria lyse at the appropriate time.</br>  
 +
We found that the cyanobacterial cell envelope is composed of 4 layers: the external surface layers ;the outer membrane; the polypeptidoglycan which is considerably thick, and the cytoplasmic membrane.( Hoiczyk E et al. 2000)To break up the peptidoglycan layer, we applied the holin-endolysin lysis strategy used by bacteriophages to exit bacterial cells(Wang IN et al. 2000). Endolysins are peptidoglycan-degrading enzymes that attack the covalent linkages of the peptidoglycans that maintain the integrity of the cell wall. In addition to endolysins, some auxiliary lysis factors are involved in cleaving the oligopeptide linkages between the peptidoglycan and the outer membrane lipoprotein. Holins are small membrane proteins that produce nonspecific lesions (holes) in the</p>
 
</div>
 
</div>
 
<div class="col-md-7">
 
<div class="col-md-7">
 
<br/><br/><br/><br/><br/><br/><br/><br/>
 
<br/><br/><br/><br/><br/><br/><br/><br/>
<img src="https://static.igem.org/mediawiki/2016/thumb/9/96/T--Tianjin--R-R_system3.jpg/800px-T--Tianjin--R-R_system3.jpg" alt="desktop">
+
<img src="https://static.igem.org/mediawiki/2016/d/d5/Igem-6803-e2.jpg" alt="desktop">
<p style="font-size:15px">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Fig.3. Brief Structure of our regulation system based on cell lysis</p>
+
<p style="font-size:15px">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Fig.2. The functions of holin and endolysins in degrading the cell wall</p>
 +
<br/><br/><br/>
 +
<p style="font-size:18px"> cytoplasmic membrane from within, allow the endolysins and auxiliary lysis factors to gain access to the polypeptidoglycan layers, and trigger the lysis process. In this way, the cell wall is easy to break up.</p>
 +
 
 
 
  
Line 99: Line 100:
 
                         
 
                         
 
<div class="row">
 
<div class="row">
<div class="col-md-5">
+
<div class="col-md-12">
  
 
+
<h3><b id="ControlTheLysisSystem">3. Control The Lysis System</b></h3>
 
+
<p style="font-size:18px"><br/>To control the appropriate time, a nickel sensing/responding signal system(Garcia-Dominguez M et al. 2000) was used to control the timing of the expression of phage lysis genes in Synechocystis 6803.</BR>
<br/><br/><br/> <img src="https://static.igem.org/mediawiki/2016/4/4b/T--Tianjin--R-R_system5.png" alt="desktop">
+
Our strategy for achieving our target is to construct a expression vector pCPC3031-Ni-13-19-15  introduced the Salmonella phage P22 lysis cassette (<I>13-19-15</I>) with a Ampicillin  selection marker  downstream of the promoter Pni, a nickel responding signal operon. Synechocystis 6803 with the pCPC3031-Ni-13-19-15 will lyse after Ni2+ addition.
<p style="font-size:15px">
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Fig.4. Mechanism of TPA positive feedback system
+
 
</p>
 
</p>
 
</div>
 
<div class="col-md-7">
 
  
<h3><b>3. TPA Positive Feedback Based Regulation System</b></h3>
+
<p style="font-size:18px"><br/>The next section is based on the TPA-inducing promoter. Considering the TPA degrading ability of <i>Rhodococcus jostii RHA1</i>, we believe there should be promoter that can sense and be induced by TPA. Luckily we find these three gene that have something to do with TPA degrading in <i>Rhodococcus jostii RHA1</i> can be induced significantly by TPA. The reason why these promoter can be induced by TPA is they have a leader sequence before the promoter sequence, we name it TPA inducible leader sequence (TILS). The gene of TPA transporting protein and regulation protein are also transformed into <i>Saccharomyces cerevisiae</i>. The TPA regulation protein is belong to the IclR family. This novel protein can combine the TILS and induce the expression of downstream gene when it combine the TPA molecule. Therefore, we insert the TILS before the enhanced promoter PGK1 so that we can make our promoter inducible by TPA.</p>
+
+
 
</div>
 
</div>
 +
 
</div>
 
</div>
<h2><b>Theoretical Background</b></h2>
+
<h2><b>Aim</b></h2>
 
<div class="row">
 
<div class="row">
<div class="col-md-6">
+
<div class="col-md-12">
<h3><b>1. The Cpx Regulation System<sup>[1]</sup></b></h3>
+
<br/> <p style="font-size:18px">In order to adapt to their changing environment,Escherichia coli bacterium need plenty of regulatory systems. The Cpx system is a three-component regulatory system which is kind of similar to the lactose operon.</p>
+
<p style="font-size:18px">The Cpx system consists of the histidine kinase CpxA, the response regulator CpxR and the periplasmic CpxP protein. CpxA is composed of a large periplasmic domain and a highly conserved cytosolic catalytic domain. Both domains are connected via two trans-membrane helices. CpxA has autophosphorylation, phosphor-transfer and phosphatase activities .Sensing envelope perturbation by an unknown feature, CpxA transmits a signal via a phosphorelay to CpxR, which in response acts as a transcription regulator of genes, whose products are mainly involved in envelope protein folding, detoxification and biofilm formation. The Cpx stress response is controlled by feedback inhibition CpxP acts at the initiation point of signal transduction by reducing CpxA auto-phosphorylation activity in the reconstituted CpxRA system.</p>
+
<p style="font-size:18px">The Cpx pathway is activated by a large number of different signals including elevated pH, increasing osmolarity, metals, altered membrane composition, overproduction of outer membrane lipoproteins and misfolded variants of maltose binding protein.</p>
+
<p style="font-size:18px">When the stress is at lower level, the CpxP protein combine with the CpxA to prevent CpxA from phosphorylating CpxR and when the stress changes at higher level, some signals lead to activation of the Cpx pathway. Particularly, misfolded protein such as MalE219 interacts directly with the periplasmic domain of CpxA, resulting in stimulation of CpxA phosphotransfer activity towards CpxR. </p>
+
  
 +
<br/> <p style="font-size:18px">In this part of our project, Cyanobacterium Synechocystis sp. PCC 6803  was selected as a model organism as the source of carbon in our mixed bacteria system. We simply to establish a cell wall disruption process which could make the cyanobacteria lyse at the appropriate time. </p>
  
</div>
 
<div class="col-md-6">
 
<br/><br/><br/><br/><br/>
 
<img src="https://static.igem.org/mediawiki/2016/9/9f/T--Tianjin--R-R_system9.png" alt="desktop">
 
<p style="font-size:15px">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Fig.5. The Cpx inclusion body responding system in <i>E.coli</i>&nbsp;<sup>[1]</sup></p>
 
 
 
 
                        </div>
 
 
                          </div>
 
                          </div>
  
<div class="row">
+
<div class="col-md-12">
<div class="col-md-5">
+
  
  
 +
<h2><b>Strategies</b></h2>
  
<br/><br/><br/><br/><br/><br/><img src="https://static.igem.org/mediawiki/2016/0/0d/T--Tianjin--R-R_system10.png" alt="desktop">
 
<p style="font-size:15px">
 
&nbsp;&nbsp;&nbsp;Fig.6. The function of ddpX in <i>E.coli</i> under starvation conditions<sup>[2]</sup>
 
</p>
 
 
</div>
 
<div class="col-md-7">
 
  
<h3><b>2. DdpX cell lysis effect<sup>[2]</sup></b></h3><br/>
 
<p style="font-size:18px">DdpX, namely D-alanyl-D-alanine dipeptidase, is a kind of peptidoglycan hydrolase which can hydrolyze the D-Ala-D-Ala part in peptidoglycan molecule. As we all know, the cell wall of bacterial mainly consists of peptidoglycan, so the ddpX can hydrolyze the cell wall of bacterial.</p>
 
<p style="font-size:18px">It cannot be more strange that many bacterial own this kind of seemly dangerous gene in their genome. In fact, this gene also has many benefits to bacterial. In gram-positive bacterial, Vancomycin, a kind of antibiotics, can cause cell lysis because it can combine the D-Ala-D-Ala residue of peptidoglycan in cell wall and block the cross-linking of peptidoglycan. Some gram-positive bacterial like Enterococcus faecalis and Streptomyces toyocaensis have developed the resistance to the vancomycin because they have VanX gene, the homologue of ddpX gene, which can hydrolyze the D-Ala-D-Ala and transfer the D-Ala-D-Ala residue of peptidoglycan to D-Ala-D-Lac residue so that the vancomycin cannot combine the peptidoglycan.</p>
 
<p style="font-size:18px">However, in gram-negative bacterial like <i>E.coli</i>, which own the robust outer membrane that can resist the vancomycin, the hydrolase ddpX with the same effects also exists. This is strange because the gram-negative bacterial have no necessity to own this kind of seemly dangerous hydrolase. Actually the ddpX in <i>E.coli</i> has another vital use when they are under starvation conditions. The ddpX can hydrolyze the D-Ala-D-Ala in their cell wall to produce the D-Ala as the carbon source to maintain their life. This mechanism is only carried out when they are under starvation conditions. If the ddpX gene is overexpressed, the cell wall will be damaged and cell lysis will occur. </p>
 
 
</div>
 
</div>
 
 
<div class="row">
 
<div class="row">
<div class="col-md-5">
+
<div class="col-md-12">
<h3><b>3. TPA Positive Feedback Mechanism<sup>[3]</sup><sup>[4]</sup></b></h3>
+
<h3><b>1. Lysis genes(<i>13-19-15</i>)</b></h3>
<br/> <p style="font-size:18px">As we all know, PET is solid in normal condition. So it’s not easy for microorganisms to realize if there is any PET in the environment. For this reason, we designed the following regulating path.</p>
+
<br/> <p style="font-size:18px">P22 gp13,P22 gp19 and P22 gp 15 are holins, endolysins and auxiliary lysis factors respectively. To construct the holin-endolysin lysis system,  they should be connected together with defined sequence. First of all, we obtained the three lysis genes which were synthesized by GENEWIZ separately. Then we use PCR to amplify this part. TA cloning and ligation of Blunt-ended DNA on the T vector were our original idea.However, <i>19</i> and <i>15</i> were spliced via TA cloning according to our presumption. <i>13</i> and <i>19-15</i> were ligated PCR overlap extension method of Warrens et al.( Warrens AN et al. 1997)</p> </br></br></br>
<p style="font-size:18px">We aim at finding a way to offer bacterial the ability to sense TPA so that it can produce more enzyme when TPA degraded by PETase exists in the environment.
+
We find the similar mechanism in the <i>Rhodococcus jostii RHA1</i>, which can make use of TPA as carbon source. We speculate that there must be the pathway we want in the <i>Rhodococcus jostii RHA1</i>. By the way, RHA1 is also well used in microbial consortia part of our project. In<i> Rhodococcus</i>, the distinct expression patterns of the TPA gene clusters indicate that they are independently regulated. The cluster contains gene encoding putative regulatory protein, namely tpaR. This gene encodes the regulatory protein of the IclR family, based on the presence of a conserved signature region. The regulator has helix-turn-helix domain and encodes regulator for its respective operons, which is consistent with the case for IclR-type regulatory proteins for other aromatic catabolism pathways. IclR-type positive regulators bind a sequence before their promoter DNA in the existence of inductor and start the transcription of downstream gene, so we need to express the regulator too.<sup>[4]</sup> Then the gene followed the promoter will be regulated by TPA. </p>
+
 
+
  
 +
<img src="https://static.igem.org/mediawiki/2016/8/8e/Igem-6803-e3.png" alt="desktop">
 +
<p style="font-size:15px">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Fig.3.  TA cloning and blunt end ligation </p></br></br>
  
 
</div>
 
</div>
<div class="col-md-7">
+
<br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/>
+
<img src="https://static.igem.org/mediawiki/2016/thumb/b/bd/T--Tianjin--R-R_system4.jpg/800px-T--Tianjin--R-R_system4.jpg" alt="desktop">
+
<p style="font-size:15px">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Fig.7. The TPA positive feedback effects found in <i>Rhodococcus jostii RHA1</i><sup>[3]</sup></p>
+
<br/><br/><br/>
+
<p style="font-size:18px">We find a promoter from the upstream of a gene named tpaAa regulated by TPA. It will express 300 times more when TPA exist. So we plan to transform the three genes into <i>Saccharomyces cerevisiae</i>. They respectively encode TPA transporter, TPA regulation protein and RFP bonded with the TILS. Then we can detect the intension of the red signal to measure the expression of the protein in distinct concentrations of TPA. </p>
+
 
+
+
 
+
+
                        </div>
+
                          </div>
+
 
+
<h2><b>Experiment Design</b></h2>
+
 
+
 
+
<div class="row">
+
 
<div class="col-md-5">
 
<div class="col-md-5">
<h3><b>1. Construction of Reporting System</b></h3>
 
<br/> <p style="font-size:18px">We use a common expression vector plasmid, pUC19, in <i>E.coli</i> to load our device, which consists of heterologous gene part (in this circumstance, PETase gene) and inclusion body reporting part. First of all, we transform the plasmid with part <i><i>BBa_K339007</i></i> from the kit shipped to us using the protocol in the instruction from iGEM official website. Then we use PCR to amplify this part with restriction endonuclease cutting sites <i>Xba1</i> and <i>Pst1</i> respectively on sense and anti-sense primers. Then we use corresponding restriction endonuclease to cut the part and plasmid pUC19 and then use T4 DNA ligase to link them together. The next step is to transform the PETase gene into the same plasmid. The initial gene synthetized does not has promoter and terminator so it cannot express. We have to cut the PETase gene and plasmid pET21A with <i>BamH1 </i> and Sal1 enzyme and link them together to transform the PETase gene into pET21A and then use PCR to amplify the T7 promoter-PETase gene-T7 terminator fragment added the restriction endonuclease cutting sites <i>EcoR1 </i> and Sac1. In this way, after we cut the recombinant plasmid pUC19 and T7 promoter-PETase gene-T7 terminator fragment with corresponding restriction endonucleases and link them together, we can obtain the complete device we want. </p>
 
  
 +
<h3><b>2.A Nickel Sensing/Responding Signal System(pCPC3031-Ni)</b></h3><br/>
 +
<p style="font-size:18px">Ni activates the transcription of downstream genes of Pni and positively autoregulates its own synthesis. The amount of mRNA increased about 20-fold within 4 h after Ni addition. First, Pni was cloned into pCPC3031 and was amplified by using PCR. Then we cut the plasmid with Nru I, after that the lysis genes, <I>13-19-15</I>, were placed downstream of Pni. What’ more, we handed in the plasimids for sequencing, which confirmed its correctness.</p>
  
</div>
 
<div class="col-md-7">
 
<br/><br/><br/><br/><br/><br/><br/><br/>
 
<img src="https://static.igem.org/mediawiki/2016/thumb/4/4e/T--Tianjin--R-R_system6.jpg/800px-T--Tianjin--R-R_system6.jpg" alt="desktop">
 
<p style="font-size:15px">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Fig.8. The construction process of our reporting system</p>
 
 
                        </div>
 
                          </div>
 
<div class="col-md-12">
 
<h3><b>2. Verification of RFP in the part <i><i>BBa_K339007</i></i></b></h3>
 
<p style="font-size:18px">The verification of RFP is carried out by using PCR to amplify the RFP gene with restriction endonuclease cutting sites <i>Xba1</i> and Sac1 added and then cut the RFP and plasmid pET21a with corresponding restriction endonuclease. Then the cut fragments are linked together and transformed into <i>E.coli</i> to express. Then we can detect the red fluorescence.</p>
 
 
</div>
 
 
 
<div class="col-md-12">
 
<h3><b>3. Method of Red Fluorescence Assay</b></h3>
 
<p style="font-size:18px">The red fluorescence is detected by 96-well Microplate Reader. The excitation wavelength is set at 584nm and the emission wavelength is set at 607nm. Considering the RFP has an advantage that it can be directly observed by bare eyes, we also use centrifugation to precipitate the bacterial and observe the color of sediment. The red color can be observed if the RFP is expressed. All the experiment including the latter mentioned regulation system use this assay method.</p>
 
 
</div>
 
 
 
<div class="col-md-12">
 
<h3><b>4. Culture and Expression Condition of <i>E.coli</i> in this experiment</b></h3>
 
<p style="font-size:18px">Tradition culture medium LB (5g/L yeast extracts, 10g/L peptone, 10g/L NaCl) is also used by us. Because of the ampicillin resistance gene in the plasmid pUC19 and pET21A, ampicillin (100μg/mL) is added to screen for the correctly transformed bacterial. 5mL bacterial are cultured in test tube at 37℃ with 200rpm shaking speed. IPTG is added to induce the expression of PETase gene after 6 hours.</p>
 
 
</div>
 
 
 
<div class="row">
 
<div class="col-md-7">
 
 
 
 
<br/><br/><br/><br/><br/><br/><br/><br/><img src="https://static.igem.org/mediawiki/2016/thumb/b/bd/T--Tianjin--R-R_system7.jpg/800px-T--Tianjin--R-R_system7.jpg" alt="desktop">
 
<p style="font-size:15px">
 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Fig.9. The construction process of our cell lysis based regulation system
 
</p>
 
 
 
 
</div>
 
</div>
<div class="col-md-5">
 
  
<h3><b>5. Construction of Cell Lysis Based Regulation System</b></h3><br/>
 
<p style="font-size:18px">This system has a great similarity to the reporting system above. Therefore it is easy to construct because we only need to change the RFP gene to the ddpX gene. However, there is no restriction endonuclease cutting site between the CpxR and RFP gene sequence according to the part map from the iGEM official website, so we have to use PCR to amplify the CpxR promoter solely and add restriction endonuclease cutting sites <i>Xba1</i> and <i>BamH1 </i> respectively in both end. The ddpX gene is obtained from the <i>E.coli</i> genome using colony PCR and the <i>BamH1 </i> and <i>EcoR1 </i> restriction endonuclease cutting sites are added respectively to both end. Then the three fragments, CpxR promoter, ddpX gene, and cut plasmid pET21a are linked together. Then the whole part is amplified by PCR with <i>Xba1</i> and <i>Pst1</i> restriction endonuclease cutting sites added respectively to both end. This way, we can easily cut down the former CpxR-RFP fragment and add the new CpxR-ddpX fragment to the plasmid pUC19. </p>
 
 
 
</div>
 
</div>
 
 
           
 
<div class="col-md-12">
 
<h3><b>6. Verification of ddpX Gene Effect</b></h3>
 
<p style="font-size:18px">Just like the verification of RFP mentioned before, the verification of ddpX is carried out in the similar way. The pET21a plasmid is cut by <i>BamH1 </i> and <i>EcoR1 </i> instead of <i>Xba1</i> and <i>EcoR1 </i>, so that the ddpX can be linked to the cut plasmid pET21a solely. Then we can detect if the cell lysis occurs.</p>
 
 
</div>   
 
 
<div class="col-md-12">
 
<h3><b>7. Method of Cell Lysis Assay</b></h3>
 
<p style="font-size:18px">Cell lysis can be reflected by the OD600 of culture medium. The lower the value of OD600 is than the wild type <i>E.coli</i> at the same condition, the stronger the cell lysis effect will be. The OD600 is detected by 96-well Microplate Reader. In order to know the OD600 value continuously, the detection process works through the time of bacterial growth and we will obtain the OD600-Growing time curve. </p>
 
 
</div>
 
 
<div class="col-md-12">
 
<h3><b>8. Chassis selection for TPA Positive Feedback Based Regulation System</b></h3>
 
<p style="font-size:18px">As the explanation before, the TPA positive feedback system is derived from the TPA degradation metabolic pathway in <i>Rhodococcus jostii RHA1</i>. Considering the difficulty of conducting gene-scale operation in this unusual organism, we directly synthetize all the gene including tpaK, tpaR, and TILS. At first we want to use <i>E.coli</i> to test this device because of the easy and familiar operation. However, in this situation, we have to transform at least 3 plasmids and this cannot be more difficult for <i>E.coli</i>. Therefore, we use another familiar organism, <i>Saccharomyces cerevisiae</i>, as the chassis. In the preliminary experiment, we successfully transform 3 plasmids into <i>Saccharomyces cerevisiae</i>. </p>
 
 
</div>   
 
 
 
<div class="row">
 
<div class="col-md-5">
 
<h3><b>9. Construction of TPA Positive Feedback Based Regulation System</b></h3>
 
<br/> <p style="font-size:18px">We use common plasmids of <i>Saccharomyces cerevisiae</i>, pRS413, pRS415 and pYES2, to respectively load the TPA transporting protein gene, TPA regulation protein gene and TPA induced RFP gene. First of all, we use PCR to amplify all of these fragments and add different restriction endonuclease cutting sites. Then we cut the plasmids with corresponding restriction endonucleases. Then these cut fragments are linked according to the designed order and transformed into <i>Saccharomyces cerevisiae</i>. We screen for the correctly transformed cell by using the Sc-Ura-Leu-His plate.</p>
 
 
 
</div>
 
 
<div class="col-md-7">
 
<div class="col-md-7">
 
<br/><br/><br/><br/>
 
<br/><br/><br/><br/>
<img src="https://static.igem.org/mediawiki/2016/thumb/a/a1/T--Tianjin--R-R_system8.jpg/800px-T--Tianjin--R-R_system8.jpg" alt="desktop">
+
<img src="https://static.igem.org/mediawiki/2016/c/c4/IGEM-6803-E4.png" alt="desktop">
<p style="font-size:15px">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Fig.10. The construction process of our TPA Positive Feedback Based regulation system</p>
+
<p style="font-size:15px">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Fig.4. Overlap PCR</p>
  
 
                        </div>
 
                        </div>
                          </div>
 
  
  
<div class="col-md-12">
+
</div
<h3><b>10. Culture and Expression Condition of <i>Saccharomyces cerevisiae</i> in this experiment</b></h3>
+
 
<p style="font-size:18px">Traditional YPD culture medium (22g/L glucose, 20g/L peptone, 10g/L yeast extracts) is used by us. Sc-Ura-Leu-His culture medium (22g/L glucose, 6.7g/L yeast nitrogen base, 1.224g/L nutrient deficiency mixture without Ura, His, Leu and Trp, 5mg/L Trp) is used to screen for correctly transformed cell. All the cells are cultured in 5mL medium at 30℃ with shaking speed of 200rpm. To induce the expression of RFP, we add TPA with different concentration. We first make up TPA standard solution with TPA concentration of 5g/L. Then we respectively add 0, 1μL, 10μL, 100μL, 1mL standard solution to the culture medium. </p>
+
  
</div> 
 
 
<div class="col-md-12">
 
<div class="col-md-12">
<h2><b>Expected Results</b></h2>
+
<h2><b>Summary</b></h2>
 
    
 
    
<p style="font-size:18px">PETase and MHETase are two key enzymes in our project. However, as heterologous proteins, the expression of these two enzymes face many problems just like expressing other heterologous proteins before including the formation of inclusion body, the lack of regulation pathway, etc. We design this R-R system in order to express the two enzymes visibly and regularly. </p>
+
<p style="font-size:18px">After analyzing and comparing Photosynthetic microorganisms from one to another indetail in two aspects of maneuverability and lipid production, we first chose <i>Synechocystis 6803</i> as the lipid producer in mixed cultivation. To release more production, three genes encoding proteins which could make the cells split were inserted into a plasmid .The next step was to lyse the bacteria at specific time, therefore we put Pni, a promoter, to the upstream of lysis genes. To sum up, we constructed Nickel-inducible lysis system in <i>Synechocystis sp.PCC 6803</i> .</p>
 
+
<li><p style="font-size:18px">First, we hope to directly observe the expression condition of our enzyme by color, when the inclusion body form, which means the overexpressing, the red color can be observed. </p></li>
+
 
+
<li><p style="font-size:18px">Second, when inclusion body form, the normal way to solve this problem is to use lysozyme and ultrasonic to break the cell and purify the protein, which is complex and time-consuming. We expect the cell lysis will automatically occur when the inclusion body form by using ddpX gene.  </p></li>
+
 
+
<li><p style="font-size:18px">Third, we expect the chassis organism can sense the existence of TPA, the hydrolyze product of PET and using TPA as the induction of PETase gene. Thus if the degradation process start, this process can be even enhanced until the PET is used up.</p></li> 
+
  
 
<h2><b>References</b></h2>
 
<h2><b>References</b></h2>
<p style="font-size:16px"><i>[1]Physiologie der Mikroorganismen, Humboldt Universitat zu Berlin, Chausseestr. Misfolded maltose binding protein MalE219 induces the CpxRA envelope stress response by stimulating phosphoryl transfer from CpxA to CpxR. Research in Microbiology 160 (2009) 396-400.<br/><br/>
+
<p style="font-size:16px"><i>[1]Espaux L, Mendez-Perez D, Li R, Keasling JD (2015) Synthetic biology for microbial production of lipid-based biofuels. <i>Curr Opin Chem Biol</i>. 29:58-65</br></br>
[2]Ivan A. D. Lwssard and Christopher T. Walsh. VanX, a bacterial D-alanyl-D-alanine dipeptidase: Resistance, immunity, or survival function? Proc. Natl. Acad. Sci. USA. Vol. 96, pp. 11028–11032, September, 1999.<br/><br/>
+
[2]Seog JL, Byung-Dae Y, O. H-M (1998) Rapid method for the determination of lipid fromthe green alga Botryococcus braunii.<i> Biotechnol Tech </i>12:553–556.</br></br>
[3]Hirofumi Hara, Lindsay D. Eltis, Julian E. Davies. Transcriptomic Analysis Reveals a Bifurcated Terephthalate
+
[3]Hoiczyk E, HanselA(2000) Cyanobacterial cell walls: News from an unusual prokaryotic envelope. <i>J Bacteriol </i>182:1191–1199.</br></br>
Degradation Pathway in Rhodococcus sp. Strain RHA1. Journal of Bacteriology, Mar. 2007, 189(5), 1641–1647.<br/><br/>
+
[4]Wang IN, Smith DL, Young R (2000) Holins: The protein clocks of bacteriophage infections.<i> Annu Rev Microbiol</i> 54:799–825.</br></br>
[4]Molina-Henares, A. J., T. Krell, M. E. Guazzaroni, A. Segura, and J. L. Ramos. 2006. Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol. Rev. 30: 157–186.</i></p><br/><br/>
+
[5]Garcia-Dominguez M, Lopez-Maury L, Florencio FJ, Reyes JC (2000) A gene clusterinvolved in metal homeostasis in the cyanobacterium Synechocystis sp. strain PCC 6803. <i>J Bacteriol</i> 182:1507–1514.</br></br>
 +
[6]Warrens AN, Jones MD, Lechler RI (1997) Splicing by overlap extension by PCR using asymmetric amplification: An improved technique for the generation of hybrid proteins of immunological interest.<i> Gene</i> 186:29–35.</br></br>
 +
[7]Akihiro Kato, Kazuhide Use, Nobuyuki Takatani, Kazutaka Ikeda, Miyuki Matsuura, Kouji Kojima (2016) Modulation of the balance of fatty acid production and secretion is crucial for enhancement of growth and productivity of the engineered mutant of the cyanobacterium Synechococcus elongates. <i>Biotechnol Biofuels</i>9:91-101.</i></br></br>
 +
</p><br/><br/></br>
  
 
   </div></div>
 
   </div></div>
Line 306: Line 178:
  
 
 
</body>
+
</body>
 
</html>
 
</html>
  
  
 
{{:Team:Tianjin/Templates/Sponsor|}}
 
{{:Team:Tianjin/Templates/Sponsor|}}
{{:Team:Tianjin/Templates/AddJS|:Team:Tianjin/Community/js/modernir.js}}
 
{{:Team:Tianjin/Templates/AddJS|:Team:Tianjin/Community/js/isotope.js}}
 
{{:Team:Tianjin/Templates/AddJS|:Team:Tianjin/Community/js/backstretch.js}}
 
{{:Team:Tianjin/Templates/AddJS|:Team:Tianjin/Community/js/appear.js}}
 
{{:Team:Tianjin/Templates/AddJS|:Team:Tianjin/Community/js/template.js}}
 

Latest revision as of 16:11, 15 October 2016

TEAM TIANJIN


Worthy




Experiment of A Controllable Lipid Producer

Overview

Cyanobacteria are excellent organisms for biofuel production. We thus have selected Cyanobacterium Synechocystis sp. PCC 6803 as the source of carbon in our mixed bacteria system. Our target is simply to make the cyanobacteria lyse at the appropriate time by transforming a plasmid contained three bacteriophage-derived lysis genes which were placed downstream of a nickel-inducible signal transduction system into the Synechocystis 6803.





desktop

                Fig.1. Lipid contents

1. Lipid Producer

Photosynthetic microorganisms, including eukaryotic algae and cyanobacteria, are being optimized to overproduce numerous biofuel. According to previous data, algae accumulate large quantities of lipid as storage materials, but they do this when under stress and growing slowly. By contrast, cyanobacteria accumulate lipids in thylakoid membranes, which are associated with high levels of photosynthesis and a rapid growth rate. Thus, photo-synthetic bacteria have a natural advantage for producing lipids at a high rate. Furthermore, being prokaryotes can be improved by genetic manipulations much more readily than can eukaryotic algae. (Espaux L et al. 2015) Therefore, we decided to do something to make cyanobacteria ,the lipid producer, more appropriate for our project.

Synechococcus elongatus PCC7942 has larger capacity of lipid production than Synechocystis sp. PCC6803 but accumulates most of the product in the cell because of the imbalance of the rates of lipid production and secretion. Initially, we intended to do something to increase lipid secretion by knocking the wzt gene(Akihiro Kato et al. 2016), however, Synechococcus elongatus PCC7942 wasn’t able to revive in two-week shaking cultivation. So we turned into Synechocystis sp.PCC 6803.

2.Lipid Recovery From Biomass


The first goal of our research was to facilitate lipid recovery from biomass. The scientific community widespread disrupts the cyanobacterial cell envelope to achieve the goal. (Seog JL et al. 1998)However, all these methods are not economical for large amounts of biomass or add additional cost and reduce the overall utility of the process. Our target is simply to make the cyanobacteria lyse at the appropriate time.
We found that the cyanobacterial cell envelope is composed of 4 layers: the external surface layers ;the outer membrane; the polypeptidoglycan which is considerably thick, and the cytoplasmic membrane.( Hoiczyk E et al. 2000)To break up the peptidoglycan layer, we applied the holin-endolysin lysis strategy used by bacteriophages to exit bacterial cells(Wang IN et al. 2000). Endolysins are peptidoglycan-degrading enzymes that attack the covalent linkages of the peptidoglycans that maintain the integrity of the cell wall. In addition to endolysins, some auxiliary lysis factors are involved in cleaving the oligopeptide linkages between the peptidoglycan and the outer membrane lipoprotein. Holins are small membrane proteins that produce nonspecific lesions (holes) in the









desktop

                            Fig.2. The functions of holin and endolysins in degrading the cell wall




cytoplasmic membrane from within, allow the endolysins and auxiliary lysis factors to gain access to the polypeptidoglycan layers, and trigger the lysis process. In this way, the cell wall is easy to break up.

3. Control The Lysis System


To control the appropriate time, a nickel sensing/responding signal system(Garcia-Dominguez M et al. 2000) was used to control the timing of the expression of phage lysis genes in Synechocystis 6803.
Our strategy for achieving our target is to construct a expression vector pCPC3031-Ni-13-19-15 introduced the Salmonella phage P22 lysis cassette (13-19-15) with a Ampicillin selection marker downstream of the promoter Pni, a nickel responding signal operon. Synechocystis 6803 with the pCPC3031-Ni-13-19-15 will lyse after Ni2+ addition.

Aim


In this part of our project, Cyanobacterium Synechocystis sp. PCC 6803 was selected as a model organism as the source of carbon in our mixed bacteria system. We simply to establish a cell wall disruption process which could make the cyanobacteria lyse at the appropriate time.

Strategies

1. Lysis genes(13-19-15)


P22 gp13,P22 gp19 and P22 gp 15 are holins, endolysins and auxiliary lysis factors respectively. To construct the holin-endolysin lysis system, they should be connected together with defined sequence. First of all, we obtained the three lysis genes which were synthesized by GENEWIZ separately. Then we use PCR to amplify this part. TA cloning and ligation of Blunt-ended DNA on the T vector were our original idea.However, 19 and 15 were spliced via TA cloning according to our presumption. 13 and 19-15 were ligated PCR overlap extension method of Warrens et al.( Warrens AN et al. 1997)




desktop

                                                                                                 Fig.3. TA cloning and blunt end ligation



2.A Nickel Sensing/Responding Signal System(pCPC3031-Ni)


Ni activates the transcription of downstream genes of Pni and positively autoregulates its own synthesis. The amount of mRNA increased about 20-fold within 4 h after Ni addition. First, Pni was cloned into pCPC3031 and was amplified by using PCR. Then we cut the plasmid with Nru I, after that the lysis genes, 13-19-15, were placed downstream of Pni. What’ more, we handed in the plasimids for sequencing, which confirmed its correctness.





desktop

          Fig.4. Overlap PCR

Summary

After analyzing and comparing Photosynthetic microorganisms from one to another indetail in two aspects of maneuverability and lipid production, we first chose Synechocystis 6803 as the lipid producer in mixed cultivation. To release more production, three genes encoding proteins which could make the cells split were inserted into a plasmid .The next step was to lyse the bacteria at specific time, therefore we put Pni, a promoter, to the upstream of lysis genes. To sum up, we constructed Nickel-inducible lysis system in Synechocystis sp.PCC 6803 .

References

[1]Espaux L, Mendez-Perez D, Li R, Keasling JD (2015) Synthetic biology for microbial production of lipid-based biofuels. Curr Opin Chem Biol. 29:58-65

[2]Seog JL, Byung-Dae Y, O. H-M (1998) Rapid method for the determination of lipid fromthe green alga Botryococcus braunii. Biotechnol Tech 12:553–556.

[3]Hoiczyk E, HanselA(2000) Cyanobacterial cell walls: News from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199.

[4]Wang IN, Smith DL, Young R (2000) Holins: The protein clocks of bacteriophage infections. Annu Rev Microbiol 54:799–825.

[5]Garcia-Dominguez M, Lopez-Maury L, Florencio FJ, Reyes JC (2000) A gene clusterinvolved in metal homeostasis in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 182:1507–1514.

[6]Warrens AN, Jones MD, Lechler RI (1997) Splicing by overlap extension by PCR using asymmetric amplification: An improved technique for the generation of hybrid proteins of immunological interest. Gene 186:29–35.

[7]Akihiro Kato, Kazuhide Use, Nobuyuki Takatani, Kazutaka Ikeda, Miyuki Matsuura, Kouji Kojima (2016) Modulation of the balance of fatty acid production and secretion is crucial for enhancement of growth and productivity of the engineered mutant of the cyanobacterium Synechococcus elongates. Biotechnol Biofuels9:91-101.






Team Tianjin Sponsor Alltech
Team Tianjin Sponsor GenScript
Team Tianjin Sponsor SynbioTech