Difference between revisions of "Team:Uppsala/Description"

(Prototype team page)
 
Line 1: Line 1:
{{Uppsala}}
+
{{Uppsala/CSS}}
<html>
+
  
  
 +
<html>
  
<div class="column full_size judges-will-not-evaluate">
+
</html>
<h3>★  ALERT! </h3>
+
<p>This page is used by the judges to evaluate your team for the<a href="https://2016.igem.org/Judging/Medals"> improve a previous part or project gold medal criterion</a>. </p>
+
<p> Delete this box in order to be evaluated for this medal. See more information at <a href="https://2016.igem.org/Judging/Pages_for_Awards/Instructions"> Instructions for Pages for awards</a>.</p>
+
</div>
+
  
 +
{{Uppsala/Navbar}}
 +
<html>
  
<div class="column full_size">
+
<body>
 
+
<div class="container"
<p>Tell us about your project, describe what moves you and why this is something important for your team.</p>
+
<div class="row">
 
+
  <div class="col-lg-8">
 
+
<h2> Microfluidics
<h5>What should this page contain?</h5>
+
<h3> What we have been up to
<ul>
+
<p>We are in the process of making a microfluidic device that will be used for cell transformation. Hitherto, we have been able to 3D print a couple of designs and discuss our final design. After we 3D print a mold that is satisfactory, we will bake PDMS on it and can later begin to test our chip. During our first trials we would like to keep things simple in order to make troubleshooting as painless of a process as possible. Therefore, we have decided to start off with the heat shock method of transformation. Our initial thoughts are to have a channel on the chip running with cells and plasmids and a parallel channel with temperature regulated water. With this technique we hope to be able to expose CaCl2 competent cells to a heat shock preceded and followed by low temperatures; much like a conventional heat shock.  
<li> A clear and concise description of your project.</li>
+
Moreover we are in the process of calculating the cost for an ordinary heat shock. The reason for this being that one of our main goals is to make cell transformation more affordable. </p>
<li>A detailed explanation of why your team chose to work on this particular project.</li>
+
<li>References and sources to document your research.</li>
+
<li>Use illustrations and other visual resources to explain your project.</li>
+
</ul>
+
  
 +
<h3>Plans for electroporation
 +
<p>One of our final goals is to produce a chip that enables electroporation. The best way to perform electroporation on a chip (as read in literature) is to use droplet techniques. That is, droplets of cell growth medium and cells separated by nonconductive material. The most common nonconductive material used is fluorinated oil. These oils are generally expensive, hard to find and may be toxic. For this reason we are considering separating droplets with gas; more precisely N2.</p>
  
 +
Next week, we hope to bake our chip and start running experiments with it.
 
</div>
 
</div>
 
<div class="column full_size" >
 
 
<h5>Advice on writing your Project Description</h5>
 
 
<p>
 
We encourage you to put up a lot of information and content on your wiki, but we also encourage you to include summaries as much as possible. If you think of the sections in your project description as the sections in a publication, you should try to be consist, accurate and unambiguous in your achievements.
 
</p>
 
 
<p>
 
Judges like to read your wiki and know exactly what you have achieved. This is how you should think about these sections; from the point of view of the judge evaluating you at the end of the year.
 
</p>
 
 
 
</div>
 
</div>
 
 
<div class="column half_size" >
 
 
<h5>References</h5>
 
<p>iGEM teams are encouraged to record references you use during the course of your research. They should be posted somewhere on your wiki so that judges and other visitors can see how you thought about your project and what works inspired you.</p>
 
 
 
</div>
 
</div>
 
+
</html>
 
+
{{Uppsala/Footer}}
<div class="column half_size" >
+
<html>
<h5>Inspiration</h5>
+
<p>See how other teams have described and presented their projects: </p>
+
 
+
<ul>
+
<li><a href="https://2014.igem.org/Team:Imperial/Project"> Imperial</a></li>
+
<li><a href="https://2014.igem.org/Team:UC_Davis/Project_Overview"> UC Davis</a></li>
+
<li><a href="https://2014.igem.org/Team:SYSU-Software/Overview">SYSU Software</a></li>
+
</ul>
+
</div>
+
 
+
 
+
  
 
</html>
 
</html>

Revision as of 14:14, 30 June 2016


Microfluidics

What we have been up to

We are in the process of making a microfluidic device that will be used for cell transformation. Hitherto, we have been able to 3D print a couple of designs and discuss our final design. After we 3D print a mold that is satisfactory, we will bake PDMS on it and can later begin to test our chip. During our first trials we would like to keep things simple in order to make troubleshooting as painless of a process as possible. Therefore, we have decided to start off with the heat shock method of transformation. Our initial thoughts are to have a channel on the chip running with cells and plasmids and a parallel channel with temperature regulated water. With this technique we hope to be able to expose CaCl2 competent cells to a heat shock preceded and followed by low temperatures; much like a conventional heat shock. Moreover we are in the process of calculating the cost for an ordinary heat shock. The reason for this being that one of our main goals is to make cell transformation more affordable.

Plans for electroporation

One of our final goals is to produce a chip that enables electroporation. The best way to perform electroporation on a chip (as read in literature) is to use droplet techniques. That is, droplets of cell growth medium and cells separated by nonconductive material. The most common nonconductive material used is fluorinated oil. These oils are generally expensive, hard to find and may be toxic. For this reason we are considering separating droplets with gas; more precisely N2.

Next week, we hope to bake our chip and start running experiments with it.