Difference between revisions of "Team:HUST-China/Description"

Line 15: Line 15:
 
     <script type="text/javascript" src="https://2016.igem.org/Team:HUST-China/js/index?action=raw&amp;ctype=text/javascript"></script>
 
     <script type="text/javascript" src="https://2016.igem.org/Team:HUST-China/js/index?action=raw&amp;ctype=text/javascript"></script>
 
     <!-- <script src="../js/jquery.tocible.min.js"></script> -->
 
     <!-- <script src="../js/jquery.tocible.min.js"></script> -->
     <script type="text/javascript" src="https://2016.igem.org/Team:HUST-China/js/tocible?action=raw&amp;ctype=text/javascript"></script>
+
     <!-- <script type="text/javascript" src="https://2016.igem.org/Team:HUST-China/js/tocible?action=raw&amp;ctype=text/javascript"></script> -->
 
     <style>
 
     <style>
 
     html {
 
     html {
Line 209: Line 209:
 
             <div class="ref"></div>
 
             <div class="ref"></div>
 
             <article>
 
             <article>
             <p>This is a toolkit where Synthetic biology can make a difference. We are inspired by the undergraduate finalist project "Noise" and their excellent work.</p>
+
             <p>This is a stage where Syn-bio can make a difference. Our team was inspired by the undergraduate finalist ”Noise” and their excellent work for synthetic biology. And this year, we wanted to participate and contribute too.</p>
                  
+
                 <!-- h2一级标题 -->
 +
                <h2>Lactose intolerance</h2>
 
                 <!-- 文字 -->
 
                 <!-- 文字 -->
 
                 <p>
 
                 <p>
                     <strong>At the beginning</strong>, we learned from previous projects and realized that, when dealing with real-world problems, issues like gene regulation, expression efficiency and system robustness all matter. When creating a great functional prototype, one should pay attention to all the details. And some of the new comers to synthetic biology may find it difficult to deal with these matters. So we thought: why not provide some gene expression toolkits to iGEMers so that they may no longer need to worry about building circuits, but focus on the key problem.
+
                     <strong>At the beginning</strong>, we learned about previous projects from the websites, and we realized that, when dealing with real-world problems, issues like gene regulation, expression efficiency and system robustness all matter. When creating a great functional prototype, one should pay attention to all the details. And some of the new comers to synthetic biology may find it difficult to deal with. So we put it in our way: why not provide some gene expression kits to iGEMers so that they no longer need to worry about building circuit, but focus on the key problem.
 
                 </p>
 
                 </p>
 
                 <p>
 
                 <p>
                     We came up with different versions of gene expression circuits: bacteriophage lambda, kinases reaction pathway, ribo-switch, RNAi and so on. We made efforts on the circuit construction and valid characterization data so users can mainly focus on the input and output which are highly concerned with real-world problems. In this manner, our toolkit can serve as a useful tool to save their time and energy. On the whole, our theme is to offer bricks to help others build their own project.
+
                     We came up with different versions of gene expression circuit: bacteriophage lambda, kinases reaction pathway, ribo-switch, RNAi and so on. We made efforts on the circuit construction and valid characterization data while users mainly focus on the input and output which are highly concerned with real-world problems. In this manner, our kit can serve as a useful tool to save their time and energy. On the whole, our theme is to offer bricks to help others build their own project.
 
                 </p>
 
                 </p>
                 <p>And this summer we <strong>made a little step</strong> to our goals. We worked out two versions of gene expression switch----a prokaryote tri-stable version derived from bacteriophage lambda and eukaryote bi-stable version based on ABA-response pathway.
+
                 <p>And this summer we <strong>stepped a little forward</strong> to our goals. We worked out two versions of gene expression switch----a prokaryote tri-stable version derived from bacteriophage lambda and eukaryote bi-stable version based on ABA-response pathway.
 
                 </p>
 
                 </p>
 
                 <p>
 
                 <p>
Line 224: Line 225:
 
                 </p>
 
                 </p>
 
                 <img src="https://static.igem.org/mediawiki/2016/7/70/T--HUST-China--Logic-gate.jpg" alt="">
 
                 <img src="https://static.igem.org/mediawiki/2016/7/70/T--HUST-China--Logic-gate.jpg" alt="">
                 <p>The circuit can rapidly reach its stable state because of the positive feedback design. And users can also adjust its threshold to satisfy different requirements. </p>
+
                 <p>The circuit can rapidly reach its stable state because of positive feedback. And users can adjust its threshold too. </p>
                  <p>More details see proof-prok</p>
+
 
                 <!-- h3二级标题 -->
 
                 <!-- h3二级标题 -->
 
                 <!--                <h3>SubHeading</h3>
 
                 <!--                <h3>SubHeading</h3>
Line 231: Line 231:
 
                 <h3>Hello world</h3>
 
                 <h3>Hello world</h3>
 
                 <p>fdwfewf</p> -->
 
                 <p>fdwfewf</p> -->
                 <p>And <strong>for more application:</strong></p>
+
                 <p>And <strong>for more application examples:</strong></p>
 
                 <p>We provide a solution to lactose intolerance based on this toolkit.</p>
 
                 <p>We provide a solution to lactose intolerance based on this toolkit.</p>
                 <p>The input of signals are achieved by two promoters: plac(lactose inducible) and patp2(base inducible). As for the output, we set the gene of interest 1 as iLDH and gene of interest 2 beta-galactosidase. iLDH can transform lactic acid into pyruvate while β-galactosidase can degrade lactose. In this way, the system can provide a promising way for the treatment of lactose intorlance.</p>
+
                 <p>The input of signals are achieved by two promoters: plac(lactose inducible) and patp2(base inducible). As for the output,we set the gene of interest 1 as iLDH and gene of interest 2 as beta-galactosidase.iLDH can transform lactic acid into pyruvate whileβ-galactosidase can degrade lactose. In this way, the system can provide a promising way for the treatment of lactose intorlance.</p>
                <p><a href="https://2016.igem.org/Team:HUST-China/Demonstrate">More details see application</a></p>
+
 
                 <img src="https://static.igem.org/mediawiki/2016/c/c8/T--HUST-China--description-app.png" alt="">
 
                 <img src="https://static.igem.org/mediawiki/2016/c/c8/T--HUST-China--description-app.png" alt="">
                 <p><strong>In our bi-stable switch</strong>, users can define an ON signal and OFF signal to control the expression of the target gene. The most attractive feature of the circuit is switch efficiency, whose mechanism is cascade reaction.</p>
+
                 <p><strong>In our bi-stable switch</strong>, users can define an open signal and off signal to control the expression of target gene . The most attractive feature of the circuit is switch efficiency, the mechanism of which is cascade reaction.</p>
              <p>More details see proof-Euk</p>
+
 
                 <img src="https://static.igem.org/mediawiki/2016/8/83/T--HUST-China--description-logic.png" alt="">
 
                 <img src="https://static.igem.org/mediawiki/2016/8/83/T--HUST-China--description-logic.png" alt="">
 
                
 
                
Line 246: Line 244:
 
         <img src="https://static.igem.org/mediawiki/2016/f/f0/T--HUST-China--returnTop.png" alt="">
 
         <img src="https://static.igem.org/mediawiki/2016/f/f0/T--HUST-China--returnTop.png" alt="">
 
     </div>
 
     </div>
    <script type="text/javascript">
 
    $(document).ready(function(e) {
 
        var widthYourScreen = document.documentElement.clientWidth || document.body.clientWidth;
 
        if (widthYourScreen > 800) {
 
            // 文章目录导航
 
            //call tocible():
 
            $('.text-content').tocible({
 
                reference: '.ref',
 
                title: 'Contents'
 
            });
 
        }
 
    });
 
    </script>
 
 
</body>
 
</body>
  
 
</html>
 
</html>

Revision as of 01:04, 17 October 2016

Description

Description

This is a stage where Syn-bio can make a difference. Our team was inspired by the undergraduate finalist ”Noise” and their excellent work for synthetic biology. And this year, we wanted to participate and contribute too.

Lactose intolerance

At the beginning, we learned about previous projects from the websites, and we realized that, when dealing with real-world problems, issues like gene regulation, expression efficiency and system robustness all matter. When creating a great functional prototype, one should pay attention to all the details. And some of the new comers to synthetic biology may find it difficult to deal with. So we put it in our way: why not provide some gene expression kits to iGEMers so that they no longer need to worry about building circuit, but focus on the key problem.

We came up with different versions of gene expression circuit: bacteriophage lambda, kinases reaction pathway, ribo-switch, RNAi and so on. We made efforts on the circuit construction and valid characterization data while users mainly focus on the input and output which are highly concerned with real-world problems. In this manner, our kit can serve as a useful tool to save their time and energy. On the whole, our theme is to offer bricks to help others build their own project.

And this summer we stepped a little forward to our goals. We worked out two versions of gene expression switch----a prokaryote tri-stable version derived from bacteriophage lambda and eukaryote bi-stable version based on ABA-response pathway.

In the tri-stable gene expression switch, users should define two input and related output gene signals. The logic gate below can illustrate the circuit better:

The circuit can rapidly reach its stable state because of positive feedback. And users can adjust its threshold too.

And for more application examples:

We provide a solution to lactose intolerance based on this toolkit.

The input of signals are achieved by two promoters: plac(lactose inducible) and patp2(base inducible). As for the output,we set the gene of interest 1 as iLDH and gene of interest 2 as beta-galactosidase.iLDH can transform lactic acid into pyruvate whileβ-galactosidase can degrade lactose. In this way, the system can provide a promising way for the treatment of lactose intorlance.

In our bi-stable switch, users can define an open signal and off signal to control the expression of target gene . The most attractive feature of the circuit is switch efficiency, the mechanism of which is cascade reaction.