Difference between revisions of "Team:HUST-China/Description"

 
(28 intermediate revisions by 6 users not shown)
Line 15: Line 15:
 
     <script type="text/javascript" src="https://2016.igem.org/Team:HUST-China/js/index?action=raw&amp;ctype=text/javascript"></script>
 
     <script type="text/javascript" src="https://2016.igem.org/Team:HUST-China/js/index?action=raw&amp;ctype=text/javascript"></script>
 
     <!-- <script src="../js/jquery.tocible.min.js"></script> -->
 
     <!-- <script src="../js/jquery.tocible.min.js"></script> -->
     <script type="text/javascript" src="https://2016.igem.org/Team:HUST-China/js/tocible?action=raw&amp;ctype=text/javascript"></script>
+
     <!-- <script type="text/javascript" src="https://2016.igem.org/Team:HUST-China/js/tocible?action=raw&amp;ctype=text/javascript"></script> -->
 
     <style>
 
     <style>
 
     html {
 
     html {
Line 128: Line 128:
 
         width: 80%;
 
         width: 80%;
 
         padding-left: 20%;
 
         padding-left: 20%;
 +
        /* margin-left: 20%; */
 +
    }
 +
    .text-content article strong{
 +
        font-size: 16px;
 
         /* margin-left: 20%; */
 
         /* margin-left: 20%; */
 
     }
 
     }
Line 135: Line 139:
 
<body>
 
<body>
 
     <header class="header">
 
     <header class="header">
 +
<div class="navbar-logo">
 +
                <a class="navbar-brand" href="https://igem.org/Main_Page">
 +
                    <img alt="Brand" src="https://2016.igem.org/wiki/skins/Igem/images/IGEM_white_letters.png">
 +
                </a>
 +
    </div>
 +
    <div class="navbar-logo">
 +
                <a class="navbar-brand" href="https://2016.igem.org/Team:HUST-China">
 +
                    <img alt="Brand" src="https://static.igem.org/mediawiki/2016/0/01/T--HUST-China--logo.png" style="left:100px;width:40px;">
 +
                </a>
 +
    </div>
 +
 
         <nav class="navbar navbar-default">
 
         <nav class="navbar navbar-default">
 
             <div class="container">
 
             <div class="container">
                 <span class="menu"> Menu</span>
+
                 <span class="menu">Menu</span>
 
                 <div class="banner-top">
 
                 <div class="banner-top">
 
                     <ul class="nav banner-nav">
 
                     <ul class="nav banner-nav">
Line 151: Line 166:
 
                             </ul>
 
                             </ul>
 
                         </li>
 
                         </li>
                         <li class="dropdown1"><a href="#" class="down-scroll">WETLAB</a>
+
                         <li class="dropdown1"><a href="#">WETLAB</a>
 
                             <ul class="dropdown2">
 
                             <ul class="dropdown2">
 
                                 <li><a href="https://2016.igem.org/Team:HUST-China/Experiments">Experiments</a></li>
 
                                 <li><a href="https://2016.igem.org/Team:HUST-China/Experiments">Experiments</a></li>
Line 160: Line 175:
 
                             </ul>
 
                             </ul>
 
                         </li>
 
                         </li>
                         <li class="dropdown1"><a class="down-scroll" href="https://2016.igem.org/Team:HUST-China/Model">MODELING</a>
+
                         <li class="dropdown1"><a class="down-scroll" href="#">MODELING</a>
                <ul class="dropdown2">
+
                            <ul class="dropdown2">
                    <li><a href="https://2016.igem.org/Team:HUST-China/Model">Overview</a></li>
+
                                <li><a href="https://2016.igem.org/Team:HUST-China/Model">Overview</a></li>
                    <li><a href="https://2016.igem.org/Team:HUST-China/Model/model-pro">Prokaryotic circuit</a></li>
+
                                <li><a href="https://2016.igem.org/Team:HUST-China/Model/model-pro">Prokaryotic circuit</a></li>
                    <li><a href="https://2016.igem.org/Team:HUST-China/Model/model-euk">Eukaryotic circuit</a></li>
+
                                <li><a href="https://2016.igem.org/Team:HUST-China/Model/model-euk">Eukaryotic circuit</a></li>
                    <li><a href="https://2016.igem.org/Team:HUST-China/Model/model-app">Application circuit</a></li>
+
                                <li><a href="https://2016.igem.org/Team:HUST-China/Model/model-app">Application circuit</a></li>
                </ul>
+
                            </ul>
            </li>
+
                        </li>
                         <li class="dropdown1"><a class="down-scroll" href="">PARTS</a>
+
                         <li class="dropdown1"><a class="down-scroll" href="#">PARTS</a>
 
                             <ul class="dropdown2">
 
                             <ul class="dropdown2">
 
                                 <li><a href="https://2016.igem.org/Team:HUST-China/Parts">Summary</a></li>
 
                                 <li><a href="https://2016.igem.org/Team:HUST-China/Parts">Summary</a></li>
Line 182: Line 197:
 
                             </ul>
 
                             </ul>
 
                         </li>
 
                         </li>
                         <li class="dropdown1"><a class="down-scroll" href="">TEAM</a>
+
                         <li class="dropdown1"><a class="down-scroll" href="#">TEAM</a>
 
                             <ul class="dropdown2">
 
                             <ul class="dropdown2">
 
                                 <li><a href="https://2016.igem.org/Team:HUST-China/Team">Team Roster</a></li>
 
                                 <li><a href="https://2016.igem.org/Team:HUST-China/Team">Team Roster</a></li>
Line 209: Line 224:
 
             <div class="ref"></div>
 
             <div class="ref"></div>
 
             <article>
 
             <article>
             <p>This is a toolkit where Synthetic biology can make a difference. We are inspired by the undergraduate finalist project "Noise" and their excellent work.</p>
+
             <p>iGEM is a stage for synthetic biology researchers to build a different world. Our team was inspired by previous iGEM teams and their projects. This year, we are eager to participate and contribute more.</p>
                  
+
                 <!-- h2一级标题 -->
 
                 <!-- 文字 -->
 
                 <!-- 文字 -->
 
                 <p>
 
                 <p>
                     <strong>At the beginning</strong>, we learned from previous projects and realized that, when dealing with real-world problems, issues like gene regulation, expression efficiency and system robustness all matter. When creating a great functional prototype, one should pay attention to all the details. And some of the new comers to synthetic biology may find it difficult to deal with these matters. So we thought: why not provide some gene expression toolkits to iGEMers so that they may no longer need to worry about building circuits, but focus on the key problem.
+
                     <strong>At the beginning</strong>, we learned about previous projects from the websites, and we realized that, when dealing with real-world problems, issues like gene regulation, expression efficiency and system robustness are all important. When creating a great functional prototype, one should pay attention to all the details. And some of the new comers to synthetic biology may find it difficult to deal with. So we put it in our way: why not provide some validated gene expression regulation kits to iGEMers so that they no longer need to worry about building circuit, but focus on the key problem.
 
                 </p>
 
                 </p>
 
                 <p>
 
                 <p>
                    We came up with different versions of gene expression circuits: bacteriophage lambda, kinases reaction pathway, ribo-switch, RNAi and so on. We made efforts on the circuit construction and valid characterization data so users can mainly focus on the input and output which are highly concerned with real-world problems. In this manner, our toolkit can serve as a useful tool to save their time and energy. On the whole, our theme is to offer bricks to help others build their own project.
+
                  We came up with different versions of gene expression circuits: lambda bacteriophage, kinases reaction pathway, ribo-switch, RNAi and so on. We made efforts on the circuit construction and valid characterization data while users mainly focus on the input and output which are highly concerned with real-world problems. In this manner, our kit can serve as a useful tool to save their time and energy. On the whole, our theme is to offer bricks to help others build their own project.
 
                 </p>
 
                 </p>
                 <p>And this summer we <strong>made a little step</strong> to our goals. We worked out two versions of gene expression switch----a prokaryote tri-stable version derived from bacteriophage lambda and eukaryote bi-stable version based on ABA-response pathway.
+
                 <p>And this summer we <strong>stepped a little forward</strong> to our goals. We worked out two versions of gene expression switch: a prokaryote tri-stable version derived from bacteriophage lambda and eukaryote bi-stable version based on ABA-response pathway.
 
                 </p>
 
                 </p>
 
                 <p>
 
                 <p>
 
                     <strong>In the tri-stable gene expression switch,</strong> users should define two input and related output gene signals. The logic gate below can illustrate the circuit better:
 
                     <strong>In the tri-stable gene expression switch,</strong> users should define two input and related output gene signals. The logic gate below can illustrate the circuit better:
 
                 </p>
 
                 </p>
                 <img src="https://static.igem.org/mediawiki/2016/7/70/T--HUST-China--Logic-gate.jpg" alt="">
+
                 <img src="https://static.igem.org/mediawiki/2016/7/70/T--HUST-China--Logic-gate.jpg" class="img-responsive" alt="">
                 <p>The circuit can rapidly reach its stable state because of the positive feedback design. And users can also adjust its threshold to satisfy different requirements. </p>
+
                 <p>The circuit can rapidly reach its stable state because of positive feedback. And users can adjust its threshold too.</p>  
                  <p>More details see proof-prok</p>
+
<br><a href="https://2016.igem.org/Team:HUST-China/Proof#location_Pro_ver" style="text-decoration:none"><button type="button" class="btn btn-info center-block">Click to know more about the circuit</button></a>  
 
                 <!-- h3二级标题 -->
 
                 <!-- h3二级标题 -->
 
                 <!--                <h3>SubHeading</h3>
 
                 <!--                <h3>SubHeading</h3>
Line 231: Line 246:
 
                 <h3>Hello world</h3>
 
                 <h3>Hello world</h3>
 
                 <p>fdwfewf</p> -->
 
                 <p>fdwfewf</p> -->
                 <p>And <strong>for more application:</strong></p>
+
                 <p><strong>For more application examples:</strong></p>
                 <p>We provide a solution to lactose intolerance based on this toolkit.</p>
+
                 <p>We provided a solution to lactose intolerance based on this toolkit.</p>
                 <p>The input of signals are achieved by two promoters: plac(lactose inducible) and patp2(base inducible). As for the output, we set the gene of interest 1 as iLDH and gene of interest 2 beta-galactosidase. iLDH can transform lactic acid into pyruvate while β-galactosidase can degrade lactose. In this way, the system can provide a promising way for the treatment of lactose intorlance.</p>
+
                 <p>The input of signals are achieved by two promoters: plac (lactose inducible) and patp2 (base inducible). As for the output, we set the gene 1 as iLDH and gene 2 as beta-galactosidase. iLDH can transform lactic acid into pyruvate whileβ-galactosidase can degrade lactose. In this way, the system can provide a promising way for the treatment of lactose intolerance.</p>
                <p><a href="https://2016.igem.org/Team:HUST-China/Demonstrate">More details see application</a></p>
+
 
                 <img src="https://static.igem.org/mediawiki/2016/c/c8/T--HUST-China--description-app.png" alt="">
 
                 <img src="https://static.igem.org/mediawiki/2016/c/c8/T--HUST-China--description-app.png" alt="">
                 <p><strong>In our bi-stable switch</strong>, users can define an ON signal and OFF signal to control the expression of the target gene. The most attractive feature of the circuit is switch efficiency, whose mechanism is cascade reaction.</p>
+
                 <p><strong>In our bi-stable switch</strong>, users can define an open signal and off signal to control the expression of target gene. The most attractive feature of the circuit is its switch efficiency, the mechanism of which is cascade reaction. </p>  
              <p>More details see proof-Euk</p>
+
                 <img src="https://static.igem.org/mediawiki/2016/8/83/T--HUST-China--description-logic.png" class="img-responsive" alt="">
                 <img src="https://static.igem.org/mediawiki/2016/8/83/T--HUST-China--description-logic.png" alt="">
+
            <br><a href="https://2016.igem.org/Team:HUST-China/Proof#location_Euk_ver" style="text-decoration:none"><button type="button" class="btn btn-info center-block"> Click to know more about the circuit</button></a>
             
+
 
             </article>
 
             </article>
 
         </div>
 
         </div>
Line 246: Line 259:
 
         <img src="https://static.igem.org/mediawiki/2016/f/f0/T--HUST-China--returnTop.png" alt="">
 
         <img src="https://static.igem.org/mediawiki/2016/f/f0/T--HUST-China--returnTop.png" alt="">
 
     </div>
 
     </div>
    <script type="text/javascript">
 
    $(document).ready(function(e) {
 
        var widthYourScreen = document.documentElement.clientWidth || document.body.clientWidth;
 
        if (widthYourScreen > 800) {
 
            // 文章目录导航
 
            //call tocible():
 
            $('.text-content').tocible({
 
                reference: '.ref',
 
                title: 'Contents'
 
            });
 
        }
 
    });
 
    </script>
 
 
</body>
 
</body>
  
 
</html>
 
</html>

Latest revision as of 23:26, 19 October 2016

Description

Description

iGEM is a stage for synthetic biology researchers to build a different world. Our team was inspired by previous iGEM teams and their projects. This year, we are eager to participate and contribute more.

At the beginning, we learned about previous projects from the websites, and we realized that, when dealing with real-world problems, issues like gene regulation, expression efficiency and system robustness are all important. When creating a great functional prototype, one should pay attention to all the details. And some of the new comers to synthetic biology may find it difficult to deal with. So we put it in our way: why not provide some validated gene expression regulation kits to iGEMers so that they no longer need to worry about building circuit, but focus on the key problem.

We came up with different versions of gene expression circuits: lambda bacteriophage, kinases reaction pathway, ribo-switch, RNAi and so on. We made efforts on the circuit construction and valid characterization data while users mainly focus on the input and output which are highly concerned with real-world problems. In this manner, our kit can serve as a useful tool to save their time and energy. On the whole, our theme is to offer bricks to help others build their own project.

And this summer we stepped a little forward to our goals. We worked out two versions of gene expression switch: a prokaryote tri-stable version derived from bacteriophage lambda and eukaryote bi-stable version based on ABA-response pathway.

In the tri-stable gene expression switch, users should define two input and related output gene signals. The logic gate below can illustrate the circuit better:

The circuit can rapidly reach its stable state because of positive feedback. And users can adjust its threshold too.


For more application examples:

We provided a solution to lactose intolerance based on this toolkit.

The input of signals are achieved by two promoters: plac (lactose inducible) and patp2 (base inducible). As for the output, we set the gene 1 as iLDH and gene 2 as beta-galactosidase. iLDH can transform lactic acid into pyruvate whileβ-galactosidase can degrade lactose. In this way, the system can provide a promising way for the treatment of lactose intolerance.

In our bi-stable switch, users can define an open signal and off signal to control the expression of target gene. The most attractive feature of the circuit is its switch efficiency, the mechanism of which is cascade reaction.