Difference between revisions of "Team:Tianjin/Model"

 
(130 intermediate revisions by 4 users not shown)
Line 5: Line 5:
  
 
<html>
 
<html>
 +
<style>
 +
#Projects{
 +
  color: inherit;
 +
  background-color: rgba(255, 255, 255, 0.1);
 +
}
 +
</style>
 
<head>
 
<head>
 
<meta charset="utf-8">
 
<meta charset="utf-8">
 
<meta name="viewport" content="width=device-width, initial-scale=1.0">
 
<meta name="viewport" content="width=device-width, initial-scale=1.0">
 +
                <style>.assumptions p {font-size:18px;}
 +
                      .formula p{font-size:45px;}
 +
                      th,td{font-size:18px;text-align:center;padding-bottom:10px}
 +
                      i{font-family:times new roman;}
 +
                </style>
  
 
</head>
 
</head>
Line 16: Line 27:
 
<!-- ================ -->
 
<!-- ================ -->
 
<div class="section clearfix object-non-visible" data-animation-effect="fadeIn">
 
<div class="section clearfix object-non-visible" data-animation-effect="fadeIn">
<div  style="margin-top:80px">
+
<div  class="container" style="margin-top:80px;width:70%">
 
                          
 
                          
 
 
 
<div class="col-md-12">
 
<div class="col-md-12">
 
<h1 id="about" class="title text-center"><span>Heterogenous Degradation By PETase</span></h1>
 
<h1 id="about" class="title text-center"><span>Heterogenous Degradation By PETase</span></h1>
<h2><b>Model Overview</b></h2>
+
<div class="assumptions">
<p style="font-size:18px" id="ReportingSystem">R-R system (namely reporting and regulation system), is used in our project in order to make the expression of PET degrading enzyme visible and regular. As its name implies, this system consists of two independent part, reporting and regulation. We test our reporting part in <i>E.coli</i> and regulation part in <i>Saccharomyces cerevisiae</i> .</p>
+
<h2><b id="ModelOverview">Model Overview</b></h2>
 +
<p  id="Overview" >In our experiment we use engineered bacteria as machines to secrete PETase to degrade PET.At first the bacteria secrete PETase ,and then enzymes diffuse into liquid phase body from the cell surface ,from liquid to the surface of PET successively.PETase adsorbs on PET during which process the substrate binding sites of PETase contact with the surface.Finally  PETase finds catalytic sites  on plastics and combine them  with its active center.Ester bonds are broken and chains in PET are ruptured,resulting in the degradation of PET.</p>
  
 
<div class="row">
 
<div class="col-md-3">
 
<br/><br/><br/><br/>
 
 
<div align="center">
 
<div align="center">
<figure>
+
<figure id="CellLysisBasedRegulationSystem">
     <a href="https://static.igem.org/mediawiki/2016/3/32/T--Tianjin--R-R_system1.jpg" data-lightbox="no" data-title="Fig.1. Structure of part <i>BBa_K339007</i>"><img src="https://static.igem.org/mediawiki/2016/3/32/T--Tianjin--R-R_system1.jpg" width="100%"></a>
+
     <a href="https://static.igem.org/mediawiki/2016/d/d4/T--Tianjin--model.jpg" data-lightbox="no" data-title="Overview on our model"><img src="https://static.igem.org/mediawiki/2016/d/d4/T--Tianjin--model.jpg" width="70%"></a>
  <figcation>Fig.1. Structure of part <i>BBa_K339007</i></figcaption>
+
</figure>
    </figure>
+
 
+
 
</div>
 
</div>
  
 +
<h3><b id="Assumptions">Assumptions</b></h3>
  
+
<div class="assumptions">
</div>
+
<p><b>1.</b> There exists feedback inhibition regulation in the growing process of a single bacteria. Unlimited growth of population growth can’t be supported due to the limitation of space and resources in a certain environment. When the population of individual bacterium has too much increased, the environment degrades and the average resource share declines, resulting in reduction in birth rate while mortality rate is increasing. Consequently it is reasonable to assume that there exists feedback inhibition regulation due to the influence of environmental factors.</p>
<div class="col-md-9">
+
<p><b>2.</b> A cell can be roughly considered as a sphere.</p>
<h3><b >1. Reporting System</b></h3>
+
<p><b>3.</b> Enzymes are in the dynamic equilibrium when transferring in the liquid phase.</p>
<p style="font-size:18px">The basis of our reporting system is the part <a href="http://parts.igem.org/Part:BBa_K339007" target="_blank"><i>BBa_K339007</i></a>, Designed by Emily Hicks from Group iGEM10_Calgary. This part can sense the CpxR protein, which will form spontaneously in <i>E.coli</i> when inclusion body and misfolding protein present in the periplasm of <i>E.coli</i>, and then start expressing RFP so that we can detect red fluorescence. As we all know, the inclusion body will inevitably form when we overexpress heterologous protein like PETase in <i>E.coli</i>. Therefore, the emission of red fluorescence can report the overexpression of PETase. What is more, this device can be modified to report overexpression of any heterologous protein only if the PETase gene is replaced by another heterologous gene. After the red fluorescence is detected, we could start the purification of protein.</p>
+
<p><b>4.</b> The resistance of enzymes’ spread from liquid body to the surface of PET is much larger than that of from the cells’ surroundings to liquid body.</p>
+
<p><b id="Summary">5.</b> It takes several steps for the enzymes to complete the degradation of PET. Enzymes have the substrate binding sites and active centers. We assume that the enzymes are firstly combined with the polymer substrate through their own substrate binding sites, and then the active centers catalyzed the degradation of the polymers.</p>
</div>
+
<p><b>6.</b> The degradation of PET takes place on the surface of PET.</p>
</div>
+
<p><b>7.</b> The mass transfer of enzymes in the liquid phase will cause some of them to stay in the liquid body and the delay of enzyme concentration changes on the PET surface.</p>
+
<div class="row">
+
<div class="col-md-2"></div>
+
+
+
<div class="col-md-8">
+
  
<div align="center">
 
<figure id="CellLysisBasedRegulationSystem">
 
    <a href="https://static.igem.org/mediawiki/2016/9/96/T--Tianjin--R-R_system2.jpg" data-lightbox="no" data-title="Fig.2. Brief Structure of our reporting system based on inclusion body sensing CpxR promoter"><img src="https://static.igem.org/mediawiki/2016/9/96/T--Tianjin--R-R_system2.jpg" width="100%"></a>
 
  <figcation>Fig.2. Brief Structure of our reporting system based on inclusion body sensing CpxR promoter</figcaption>
 
    </figure>
 
</div>
 
  
</div>
 
  
 +
<h3><b >Summary</b></h3>
 +
<p id="TheFormulasfor">
 +
Based on the assumptions  above and the description of PET degradation process in a heterogeneous system, we first establish the equation of measuring how much percent the PET degrades and how much the degrading rate is. Then we use the simple but mature Logistic Equation to describe the process of cell growth, and Leudeking-Piret Equation which is a correlation between cell growth rate and product producing rate, to describe the kinetic process of PETase production. Then we use the general method of describing mass transfer process to establish mass transfer rate equation when enzymes diffuse from the cell surface to liquid phase body then from liquid phase body to the PET surface, and the distribution equation of enzyme concentration, respectively. <br/><br/>From those equations we can get the total mass transfer rate equation of the enzymes in a heterogeneous system. We analyze and then make a conclusion that the mass transfer diffusion mainly leads to the delay of enzyme concentration change on the PET surface .Finally, taking that MHET, the product of PET degradation, will show competitive inhibition effect into consideration, based on the adsorption equilibrium of PETase on the PET surface, we use the steady state approximation theory and deduce the total kinetic equation of PETase degrading PET. Solve this differential equation we obtain the degradation rate curve of PET under heterogeneous system.
 +
</p>
 +
<hr>
 +
<!----------------------------------------------------------------->
  
  
<div class="col-md-2"></div>
 
  
+
<h2><b >The Formulas for Calculating Biodegradation Percentage and The Degradation Rate</b></h2>
</div>
+
<p>Since our project aims to degrade PET, we need to propose a stable index to measure the degree of degradation of the plastics and another one to measure the degradation rate. Here we choose to describe degradation rate and percentage.
 +
</p>
 +
<p>
 +
The role of PETase plays in the degradation is to catalyze the cleavage of ester bonds between TPA and EG. This cleavage will directly lead to the decomposition of whole polymer chain and finally the instability of plastics. Thus we choose the ester bond number as an index to evaluate this degradation process.
 +
</p>
 +
<p>
 +
The calculation formula for calculating the number of moles of ester bonds (namely the number of moles when polymers are completely degraded):
 +
</p>
 +
<p class="formula">$${n_{EB}} = {n_{EB/{M_{rep}}}} \cdot m/{M_{rep}}  $$</p>  <!---(2-1)---->
  
</div>
 
 
  
<div class="row">
+
<table style="width:80%;margin-left:200px;margin-bottom:20px">
<div class="col-md-5">
+
                           
<h3><b >2. Cell Lysis Based Regulation System</b></h3>
+
                            <tr style="width:100%">
<br/> <p style="font-size:18px" >The regulation system consists of two section. The first section is based on the already mentioned reporting system. We change the RFP gene to the novel ddpX (D-alanyl-D-alanine dipeptidase) gene from <i>E.coli</i> genome. The ddpX gene can hydrolyze the D-Ala-D-Ala structure in peptidoglycan molecule and cause damage to the cell wall of <i>E.coli</i>. Under normal condition, this gene only express when the cell is in starvation mode in order to use hydrolysate alanine as carbon source. However, if we overexpress this gene, the cell wall will be dissolved and finally cell lysis will happen. Therefore, in this system, when the PETase is overexpressed, the spontaneously forming inclusion body will induce the expression of ddpX and cause cell lysis. It will provide us with a novel and convenient and way of protein purification when you use <i>E.coli</i> as chassis.</p>
+
                              <td style="width:10%;text-align:left"><i>n</i><sub>EB</sub></i></td>
</div>
+
                              <td style="width:90%;text-align:left">The mole number of the broken ester bonds in theory(μmol)</td>                  
<div class="col-md-7">
+
                            </tr>
<br/><br/><br/><br/><br/><br/><br/><br/>
+
                            <tr style="width:100%">                       
 +
                              <td style="width:10%;text-align:left"><i>m</i></td>
 +
                              <td style="width:90%;text-align:left">Loading amount of the polymer (μg)</td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>M</i><sub>rep</sub></td>
 +
                              <td style="width:90%;text-align:left">The molar mass of the repeat units in the polymer(μg/μmol)</td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>n</i><sub>EB/M<sub>rep</sub></td>
 +
                              <td style="width:90%;text-align:left">The number of ester bonds in a repeat unit</td>
 +
                            </tr>
 +
</table>
  
  
<div align="center">
 
<figure >
 
    <a href="https://static.igem.org/mediawiki/2016/9/96/T--Tianjin--R-R_system3.jpg" data-lightbox="no" data-title="Fig.3. Brief Structure of our regulation system based on cell lysis"><img src="https://static.igem.org/mediawiki/2016/9/96/T--Tianjin--R-R_system3.jpg" width="100%"></a>
 
  <figcation>Fig.3. Brief Structure of our regulation system based on cell lysis</figcaption>
 
    </figure>
 
</div>
 
<br/><br/><br/><br/><br/>
 
<div  id="TPAPositiveFeedbackBasedRegulationSystem" ></div>
 
  
+
<p id="TheEquationforThe">The percentage of degradation of ester bonds can be obtained through that ratio.</p>
                        </div>
+
<p class="formula">$$\omega  = {n_{\exp }}/{n_{EB}}$$</p>
                          </div>
+
<p id="Thekineticsofcellgrowth">Similarly, the degrading rate can also be described by a series of formulas shown below:</p>
                       
+
<p class="formula">$$v =  - \frac{{d{n_{\exp }}}}{{dt}}$$</p>
<div class="row">
+
<div class="col-md-5">
+
  
 
+
<!----------------------------------------------------------------->
 
+
<h2><b >The Equation for The Growth Rate of Enzyme Proteins</b></h2>
<br/><br/><br/>
+
<h3><b>The kinetics of cell growth</b></h3>
 +
<p>According to the characterisitics of microbial cell growth, Monod Equation is the most commonly used one. Although this equation is considered to be simple and effective when used to describe the growth of bacteria, it is only suitable under the condition that there is no other restrictive substances in the environment. In our system, PETase is secreted by the bacteria to the environment and, more limitation by feedback regulation will arise if it is in a mixed bacteria system. Thus we utilize the Logistic Equation to describe the rhythm of the growth rate.</p>
 +
<p>Logisic model is a typical S-shaped curve that can reflect the inhibition effect caused by the increase of bacteria concentration in the fermentation process. In the early stage, the bacteria concentration is low , namel cx is much lower than cxm, therefore the item of cx/cxm can be neglected. The colony is in the stationary phase after the logarithmic phase and at that time cx is close to cxm. The colony ceases to grow. The whole process can be described in the following equation:</p>
 +
<p>\[{r_x} = \frac{{d{c_x}}}{{dt}} = {\mu _m}{c_x}(1 - \frac{{{c_x}}}{{{c_x}_m}})\]</p>
 +
<table style="width:80%;margin-left:200px;margin-bottom:20px">
 +
                           
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>R</i><sub>x</sub></td>
 +
                              <td style="width:90%;text-align:left">The growth rate of cell growth</td>                 
 +
                            </tr>
 +
                            <tr style="width:100%">                       
 +
                              <td style="width:10%;text-align:left"><i>C</i><sub>x</sub></td>
 +
                              <td style="width:90%;text-align:left">The concentration of cells</td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>C</i><sub>xm</sub></td>
 +
                              <td style="width:90%;text-align:left">The maximum concentration of cells</td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>μ</i></td>
 +
                              <td style="width:90%;text-align:left">Specific growth rate , namely the growth rate of a unit thalli concentration</td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>μ</i><sub>m</sub></td>
 +
                              <td style="width:90%;text-align:left">The maximum specific growth rate</td>
 +
                            </tr>
 +
</table>
 +
<p>The definition of <i>μ</i> is :</p>
 +
<p class="formula">$$\mu  = \frac{{{r_x}}}{{{c_x}}}$$</p>
 +
<p>When cells are in exponential phase, <i>μ</i> is generally a constant,so</p>
 +
<p class="formula">$$\mu  = \frac{1}{t}\ln \frac{{{c_x}}}{{{c_{x0}}}}$$</p>
 +
<p>Under the condition when <i>t</i>=0, <i>c</i><sub>x</sub>=<i>c</i><sub>x<sub>0</sub></sub>, we integrate the formula above:</p>
 +
<p>\[{c_x} = \frac{{{c_x}_0{c_x}_m{e^{{\mu _m}t}}}}{{{c_x}_m - {c_x}_0(1 - {e^{{\mu _m}t}})}}\]</p>
 +
<p id="Theformationdynamics">Solve this equation and the growth curve can be obtained:</p>
  
 
<div align="center">
 
<div align="center">
  <figure>
+
  <figure id="CellLysisBasedRegulationSystem">
     <a href="https://static.igem.org/mediawiki/2016/4/4b/T--Tianjin--R-R_system5.png" data-lightbox="no" data-title="Fig.4. Mechanism of TPA positive feedback system"><img src="https://static.igem.org/mediawiki/2016/4/4b/T--Tianjin--R-R_system5.png" width="100%"></a>
+
     <a href="https://static.igem.org/mediawiki/2016/e/e4/T--Tianjin--Fig.1_Curve_of_the_bacteria_growth.jpg" data-lightbox="no" data-title="Fig.1 The growth curve of the bacteria"><img src="https://static.igem.org/mediawiki/2016/e/e4/T--Tianjin--Fig.1_Curve_of_the_bacteria_growth.jpg" width="40%"></a>
  <figcation>Fig.4. Mechanism of TPA positive feedback system</figcaption>
+
</figure>
    </figure>
+
 
</div>
 
</div>
  
  
 +
<h3><b >The formation dynamics of expression product (PETase)</b></h3>
 +
<p>The extreme diversity of metabolites produced by microbial fermentation and the complexity of biosynthesis routes in the cells cause the biosynthetic pathways and metabolic regulation mechanism of those metabolites to show diverse characterisitics. We use the relations between cell growth rate and the production rate  to describe the rate of protein production. The universal model can be expressed by Leudeking-Piret Equation:</p>
 +
<p>\[{r_E} = \frac{{dE}}{{dt}} = \alpha \frac{{d{c_x}}}{{dt}} + \beta {c_x}\]</p>
 +
<table style="width:80%;margin-left:200px;margin-bottom:20px">
 +
                           
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>α</i></td>
 +
                              <td style="width:90%;text-align:left">A product synthesis constant associated with bacteria growth(g•g<sup>-1</sup>)</td>                 
 +
                            </tr>
 +
                            <tr style="width:100%">                       
 +
                              <td style="width:10%;text-align:left"><i>β</i></td>
 +
                              <td style="width:90%;text-align:left">A product synthesis constant irrelevant with bacteria growth(g•g<sup>-1</sup>•h<sup>-1</sup>)</td>
 +
                            </tr>
 +
                         
 +
</table>
 +
<p>When <i>α</i>≠0 and <i>β</i>=0, the model is growth coupling. When <i>α</i>=0 and <i>β</i>≠0, the model is non-growth coupling. When <i>α</i>≠0 and <i>β</i>≠0, the model is partial-growth coupling.</p>
  
+
<p>Plug the cell growth rate into the equation to simplify:</p>
</div>
+
<p>\[{r_E} = \frac{{dE}}{{dt}} = {c_x} \cdot \left[ {\alpha {\mu _m}(1 - \frac{{{c_x}}}{{{c_{xm}}}}) + \beta } \right]\]</p>
<div class="col-md-7">
+
<p>Integrate the equation above.</p>
 +
<p class="formula">\[E = \alpha (\frac{{{c_{x0}}{c_m}{e^{{\mu _m}t}}}}{{{c_m} - {c_{x0}} + {c_{x0}}{e^{{\mu _m}t}}}} - {c_{x0}}) + \frac{{\beta {c_{xm}}}}{{{\mu _{xm}}}}\ln \frac{{{c_{xm}} - {c_{x0}} + {c_{x0}}{e^{{\mu _m}t}}}}{{{c_{xm}}}}\]</p>
 +
<p>Solve this equation and the production curve of PETase can be obtained:</p>
  
<h3><b >3. TPA Positive Feedback Based Regulation System</b></h3>
 
<p style="font-size:18px"><br/>The next section is based on the TPA-inducing promoter. Considering the TPA degrading ability of <i>Rhodococcus jostii RHA1</i>, we believe there should be promoter that can sense and be induced by TPA. Luckily we find these three gene that have something to do with TPA degrading in <i>Rhodococcus jostii RHA1</i> can be induced significantly by TPA. The reason why these promoter can be induced by TPA is they have a leader sequence before the promoter sequence, we name it TPA inducible leader sequence (TILS). The gene of TPA transporting protein and regulation protein are also transformed into <i>Saccharomyces cerevisiae</i>. The TPA regulation protein is belong to the IclR family. This novel protein can combine the TILS and induce the expression of downstream gene when it combine the TPA molecule. Therefore, we insert the TILS before the enhanced promoter PGK1 so that we can make our promoter inducible by TPA.</p>
 
 
</div>
 
</div>
 
<hr  id="TheCpxRegulationSystem">
 
 
 
 
 
 
 
 
<h2><b >Theoretical Background</b></h2>
 
<div class="row">
 
<div class="col-md-6">
 
<h3><b >1. The Cpx Regulation System<a class="btn popover-info ref-title-link" data-toggle="popover" data-placement="top" title="Reference" data-content="Physiologie der Mikroorganismen, Humboldt Universitat zu Berlin, Chausseestr. Misfolded maltose binding protein MalE219 induces the CpxRA envelope stress response by stimulating phosphoryl transfer from CpxA to CpxR. Research in Microbiology 160 (2009) 396-400.">[1]</a></b></h3>
 
<br/> <p style="font-size:18px">In order to adapt to their changing environment,Escherichia coli bacterium need plenty of regulatory systems. The Cpx system is a three-component regulatory system which is kind of similar to the lactose operon.</p>
 
<p style="font-size:18px">The Cpx system consists of the histidine kinase CpxA, the response regulator CpxR and the periplasmic CpxP protein. CpxA is composed of a large periplasmic domain and a highly conserved cytosolic catalytic domain. Both domains are connected via two trans-membrane helices. CpxA has autophosphorylation, phosphor-transfer and phosphatase activities .Sensing envelope perturbation by an unknown feature, CpxA transmits a signal via a phosphorelay to CpxR, which in response acts as a transcription regulator of genes, whose products are mainly involved in envelope protein folding, detoxification and biofilm formation. The Cpx stress response is controlled by feedback inhibition CpxP acts at the initiation point of signal transduction by reducing CpxA auto-phosphorylation activity in the reconstituted CpxRA system.</p>
 
<p style="font-size:18px">The Cpx pathway is activated by a large number of different signals including elevated pH, increasing osmolarity, metals, altered membrane composition, overproduction of outer membrane lipoproteins and misfolded variants of maltose binding protein.</p>
 
<p style="font-size:18px" id="DdpXcelllysiseffect">When the stress is at lower level, the CpxP protein combine with the CpxA to prevent CpxA from phosphorylating CpxR and when the stress changes at higher level, some signals lead to activation of the Cpx pathway. Particularly, misfolded protein such as MalE219 interacts directly with the periplasmic domain of CpxA, resulting in stimulation of CpxA phosphotransfer activity towards CpxR. </p>
 
 
 
</div>
 
<div class="col-md-6">
 
<br/><br/><br/><br/><br/>
 
  
 
<div align="center">
 
<div align="center">
  <figure>
+
  <figure id="CellLysisBasedRegulationSystem">
     <a href="https://static.igem.org/mediawiki/2016/9/9f/T--Tianjin--R-R_system9.png" data-lightbox="no" data-title="Fig.5. The Cpx inclusion body responding system in <i>E.coli</i>&nbsp<sup>[1]</sup>"><img src="https://static.igem.org/mediawiki/2016/9/9f/T--Tianjin--R-R_system9.png" width="100%"></a>
+
     <a href="https://static.igem.org/mediawiki/2016/8/88/T--Tianjin--Fig.2_Curve_of_PETase_production_by_the_bacteria.jpg" data-lightbox="no" data-title="Fig.2 Production curve of PETase by the bacteria"><img src="https://static.igem.org/mediawiki/2016/8/88/T--Tianjin--Fig.2_Curve_of_PETase_production_by_the_bacteria.jpg" width="40%"></a>
  <figcation>Fig.5. The Cpx inclusion body responding system in <i>E.coli</i>&nbsp<sup>[1]</sup></figcaption>
+
</figure>
    </figure>
+
 
</div>
 
</div>
 +
<br/>
 +
<p id="TheTransferProcess">Compared with the growth curve of bacteria, we can see intuitively that at the beginning, the correlation between the enzymes production and the concentration of bacteria is high. And with the time passing by the correlation becomes lower and finally disappears.</p>
 +
<hr>
 +
<!----------------------------------------------------------------->
 +
<h2><b >The Transfer Process of Enzymes in The Liquid Phase</b></h2>
 +
<p id="Themasstransferprocess">The secretion of enzymes from cells will inevitably lead to the increase of enzyme concentration nearby. And when enzyme concentrations surrounding the cells are larger than that in the liquid phase body, a driving force will emerge, causing the diffusion of enzymes into liquid phase body. On the other hand, the enzymes in the liquid phase will reach the surface of PET along with the free diffusion of molecules. So there are two transfer processes before the enzymes adsorp on the PET surface.</p>
 +
<h3><b >The mass transfer process of enzymes in the liquid phase body</b></h3>
 +
<p>Cells secrete enzymes to the outside. Here a cell can be regarded as a sphere and there’s a spherical shell composed by the enzymes in the outer surface of the sphere. Inside this shell an unsteady mass transfer process will occur along the radius direction.</p>
 +
<p>Do differential enzyme E mass balance in a sphere with radius r and thickness dr. The rate of mass imported from the inner surface:</p>
 +
<p class="formula">$${r_{imp}}{\rm{ =  }}{j_{{\rm{er}}}} \cdot 4\pi {r^2}$$</p>
 +
<table style="width:80%;margin-left:200px;margin-bottom:20px">
 +
                           
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>r</i><sub>imp</sub></td>
 +
                              <td style="width:90%;text-align:left">Rate of imported mass</td>                 
 +
                            </tr>
 +
</table>                       
 +
<p >The rate of mass output from the outside surface is:</p>
 +
<p class="formula">$${r_{\exp }}{\rm{ = }}{j_{{\rm{er}}}} \cdot 4\pi {r^2}{\rm{ + }}\frac{{\partial ({j_{{\rm{er}}}} \cdot 4\pi {r^2})}}{{\partial r}}dr$$</p>
 +
<table style="width:80%;margin-left:200px;margin-bottom:20px">
 +
                           
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>r</i><sub>exp</sub></td>
 +
                              <td style="width:90%;text-align:left">Rate of exported mass</td>                 
 +
                            </tr>
 +
</table> 
 +
<p>The rate of mass accumulation in the sphere:</p>
 +
<p class="formula">$${r_{acc}}{\rm{ = }}\frac{{\partial E}}{{\partial t}} \cdot 4\pi {r^2}dr$$
 +
            $${r_{pro}}{\rm{ = }}{r_E} = \frac{{dE}}{{dt}}$$</p>
 +
<table style="width:80%;margin-left:200px;margin-bottom:20px">
 +
                           
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>r</i><sub>acc</sub></td>
 +
                              <td style="width:90%;text-align:left">Rate of accumulation</td>                 
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>r</i><sub>pro</sub></td>
 +
                              <td style="width:90%;text-align:left">Rate of production</td>                 
 +
                            </tr>
 +
</table> 
 +
<p>Based on the conservation of mass, we can get:</p>
 +
<p>Rate of exported mass – rate of imported mass + rate of accumulation – producing rate = 0</p>
 +
<p>Substitute those rate of mass into this equation:</p>
 +
<p class="formula">$$\frac{{\partial ({j_{er}}{r^2})}}{{\partial r}} + \frac{{\partial E}}{{\partial t}}{r^2} - {R_E} = 0$$</p>
 +
<p>Based on Fick’s first law,</p>
 +
<p class="formula">$${j_{er}} =  - D\frac{{\partial E}}{{\partial r}}$$</p>
 +
<p>Substitute and sort this equation. Finally, we can get the unstable diffusion differential equation while the enzymes near the cells are secreted along direction <i>r</i>.</p>
 +
<p>$$\frac{{\partial E}}{{\partial t}} = D\frac{1}{{{r^2}}}\frac{\partial }{{\partial r}}({r^2}\frac{{\partial E}}{{\partial r}}) + {r_E}$$</p><!--式2-13-->
 +
<p>Integrate the equation above then we can get the distribution equation of the enzyme concentration.</p>
 +
<p id="Masstransferprocessofenzymes">If we use the diffusion rate equation, the rate of enzyme diffusion from cells to liquid phase body can be described as:</p>
 +
<p class="formula">\[\frac{{d{E_x}}}{{dt}} = {k_c}{a_c}({E_c} - {E_x})\]</p>
  
 +
<table style="width:80%;margin-left:200px;margin-bottom:20px">
 +
                           
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>E</i><sub>x</sub></td>
 +
                              <td style="width:90%;text-align:left">The concentration of enzyme in liquid phase body</td>                 
 +
                            </tr>
 +
                            <tr style="width:100%">                       
 +
                              <td style="width:10%;text-align:left"><i>E</i><sub>c</sub></td>
 +
                              <td style="width:90%;text-align:left">The concentration of enzyme on cell surface</td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>k</i><sub>c</sub></td>
 +
                              <td style="width:90%;text-align:left">Mass transfer coefficient in liquid phase</td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>a</i><sub>c</sub></td>
 +
                              <td style="width:90%;text-align:left">The surface area of cells</td>
 +
                            </tr>
 +
                         
 +
</table>
 +
<h3><b >Mass transfer process of enzymes from liquid phase to the surface of PET</b></h3>
  
+
<p>Similar to the process of diffusion from cells to liquid body, based on Fick’s first law and mass conservation we can get the differential equation of the diffusion process.</p>
 
+
<p class="formula">$$\frac{{\partial E}}{{\partial t}} = D(\frac{{{\partial ^2}E}}{{\partial {x^2}}} + \frac{{{\partial ^2}E}}{{\partial {y^2}}} + \frac{{{\partial ^2}E}}{{\partial {z^2}}}) + {r_E}$$</p>
+
<p>If we integrate the formula above, we can get the distributing equation of the enzyme concentration.</p>
                        </div>
+
<p id="Totaldiffusionrateequation">Similarly with the diffusion rate equation, the equation of the rate of enzyme diffusion from liquid to PET surface can be obtained:</p>
                          </div>
+
<p class="formula">$$\frac{{d{E_p}}}{{dt}} = {k_p}{a_p}({E_x} - {E_p})$$</p>
 
+
<div class="row">
+
<div class="col-md-5">
+
 
+
 
+
 
+
<br/><br/><br/><br/><br/><br/>
+
 
+
 
+
  
 +
<table style="width:80%;margin-left:200px;margin-bottom:20px">
 +
                           
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>E</i><sub>x</sub></td>
 +
                              <td style="width:90%;text-align:left">The enzyme concentration in liquid phase</td>                 
 +
                            </tr>
 +
                            <tr style="width:100%">                       
 +
                              <td style="width:10%;text-align:left"><i>E</i><sub>p</sub></td>
 +
                              <td style="width:90%;text-align:left">The enzyme concentration on the cells’surface</td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>k</i><sub>p</sub></td>
 +
                              <td style="width:90%;text-align:left">Mass transfer coefficient in liquid phase </td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>a</i><sub>p</sub></td>
 +
                              <td style="width:90%;text-align:left">The surface area of cells</td>
 +
                            </tr>
 +
                         
 +
</table>
 +
<h3><b >Total diffusion rate equation in liquid phase</b></h3>
 +
<p>The total diffusion equation of the process can be described as:<p>
 +
<p class="formula">$$\frac{{dE}}{{dt}} = Ka({E_c} - {E_p} - \Delta E)$$</p>
 +
<table style="width:80%;margin-left:200px;margin-bottom:20px">
 +
                           
 +
                         
 +
                            <tr style="width:100%">                       
 +
                              <td style="width:10%;text-align:left"><i>K</i></td>
 +
                              <td style="width:90%;text-align:left">the total mass transfer coefficient</td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>a</i></td>
 +
                              <td style="width:90%;text-align:left">Solid-liquid interface contact area </td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>E</i><sub>c</sub></td>
 +
                              <td style="width:90%;text-align:left">the enzyme concentration on cells’surface</td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>E</i><sub>p</sub></td>
 +
                              <td style="width:90%;text-align:left">the enzyme concentration on PET surface </td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>ΔE</i></td>
 +
                              <td style="width:90%;text-align:left">The loss of driving force of mass transfer caused by the enzyme concentration accumulation  in the liquid phase.</td>
 +
                            </tr>
 +
                 
 +
</table>
 +
<p>Assuming that the diffusion process in liquid phase is a dynamic balancing process, which means the concentration variation in the liquid phase body is equal to the rate of enzyme production, it can be describe as:</p>
 +
<p class="formula">$$\frac{{d{E_c}}}{{dt}} - {r_E} = \frac{{d{E_P}}}{{dt}}$$</p>
 +
<p>The expanded form is:</p>
 +
<p class="formula">\[\frac{{dE}}{{dt}} = \frac{{({E_c} - {E_x}) - \frac{{{r_E}}}{{{k_c}{a_c}}} + ({E_x} - {E_p})}}{{\frac{1}{{{k_c}{a_c}}} + \frac{1}{{{k_p}{a_p}}}}}\]</p>
 +
<p>So the relationship between the parameters in total mass flux equation and those in interphase mass flux equation is:</p>
 +
<p class="formula">$$\frac{1}{{Ka}} = \frac{1}{{{k_c}{a_c}}} + \frac{1}{{{k_p}{a_p}}}$$</p>
 +
<p>\[\Delta E = \frac{{{r_E}}}{{{k_c}{a_c}}}\]</p>
 +
<p id="Timelosscaused">As we can see, the total resistance for enzymes in liquid phase is the resistance from cell surface to liquid phase body plus that from liquid to PET surface. In this system, the adsorption of enzymes on the PET surface will lead to the accumulation of the enzymes. So the concentration gradient drops in the concentration field near the PET surface. As a result, the most of the resistance for enzyme transfer in liquid phase is that from liquid to PET surface, which can be described as:</p>
 +
<p>\[\frac{1}{{Ka}} = \frac{1}{{{k_c}{a_c}}}\;\;\;\;\;K \approx \frac{{{k_c}{a_c}}}{a}\]</p>
 +
<h3><b >Time loss caused by mass transfer in liquid phase</b></h3>
 +
<p>After secreted  by cells, enzymes diffuse to the surface of PET through liquid phase.In the process of mass tranfer, enzyme concentration in liquid phase will be balanced with that on the surface of cells and that on the surface of PET.Thus some enzymes will remain in liquid phase body.And the mass transfer process will lead to the  delay of enzyme concentration change on the PET surface.This can be expressed by the equation below: </p>
 +
<p id="TheprocessofPETase">\[\int_t^{t + T} {Ka({E_c} - {E_P} - \Delta E)dt = {E_c} - {E_P}} \]</p>  <!---36--->
 +
<table style="width:80%;margin-left:200px;margin-bottom:20px">
 +
                           
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>T</i></td>
 +
                              <td style="width:90%;text-align:left">Delay time,a function of time</td>                 
 +
                            </tr>
 +
                         
 +
</table>
 +
<p>The equation above is an integral equation.Corresponding differential equation is:</p>
 +
<p class="formula">\[Ka[\frac{{dT}}{{dt}}\Delta E(t + T) - \Delta E(t)] = \frac{{\Delta E(t)}}{{dt}}\]</p>
 +
<p>Intergrate this equation and we get the relation between delay time T and time:</p>
 
<div align="center">
 
<div align="center">
  <figure>
+
  <figure id="CellLysisBasedRegulationSystem">
     <a href="https://static.igem.org/mediawiki/2016/0/0d/T--Tianjin--R-R_system10.png" data-lightbox="no" data-title="Fig.6. The function of ddpX in <i>E.coli</i> under starvation conditions <sup>[2]</sup>"><img src="https://static.igem.org/mediawiki/2016/0/0d/T--Tianjin--R-R_system10.png" width="100%"></a>
+
     <a href="https://static.igem.org/mediawiki/2016/d/df/T--Tianjin--Fig.3_Curve_of_the_concentration_change_delay_of_PETase_on_PET_surface_caused_by_mass_transfer_in_liquid_phase.jpg" data-lightbox="no" data-title="Fig.3"><img src="https://static.igem.org/mediawiki/2016/d/df/T--Tianjin--Fig.3_Curve_of_the_concentration_change_delay_of_PETase_on_PET_surface_caused_by_mass_transfer_in_liquid_phase.jpg" width="70%"></a>
  <figcation>Fig.6. The function of ddpX in <i>E.coli</i> under starvation conditions <sup>[2]</sup></figcaption>
+
</figure>
    </figure>
+
 
</div>
 
</div>
  
 +
<hr>
 +
<!----------------------------------------------------------------->
 +
<h2><b id="Establishmentofdynamics">The process of PETase adsorbing on PET surface and enzymes catalyzing PET degradation</b></h2>
 +
<p>The biodegradation of polymer by enzymes is a kind of heterogeneous enzymatic reactions. Since the classical dynamics equation for enzymatic reaction, Michaelis-Menten equation, is based on homogeneous enzyme- substrate system,  it’s not suitable to describe the process of the degradation of polymers. Enzymes will act with polymers through their bonding sites and combine with the substrate after their secretion and diffusion to the PET surface from cells. Both of the molecular configurations change after the adsorption. The enzymatic active center will expose to ‘find’ the corresponding sites on the polymer. At the same time, the polymer must offer the active segment. Then the enzymes catalyze to break the ester bonds, and the small molecules such as MHET will be released and diffuse into the liquid phase. Finally PET will desorb enzymes.</p>
 +
<h3><b >Establishment of dynamics equation for PET enzymatic degradation</b></h3>
 +
<p>Assuming that there is a bonding site and an active center in the enzyme, it combines with the substrate through its bonding site and then degrades the polymer with its active site. In this system the product molecules still contain ester bonds, as  a result, MHET may act with the enzymes before its diffusion into the solution and restrain the combination between PET and PETase. This competitive restraint will lead to a declination in the catalysis rate. Those above can be described as:</p>
  
 +
<center><img src="https://static.igem.org/mediawiki/2016/5/58/T--Tianjin--model23.png" width="160px"></center>
  
 +
<p id="Dynamicsequationof">Compared with other kinds of plastics, PET is more difficult to be degraded for the sake of  its distinct structure. Aliphatic polymers are biodegradable for its good elasticity while aromatic polymer is rigid with benzene. Through the above description of the process, the enzyme need to find an active segment to combine with. So it supposes the polymer to get flexibility to increase the possibility to react with PETase. However, the rigidity of PET leads to reducing of the activity of PETase. So this step is the restrict step of the whole enzymatic process. Based on the stationary approximate theory, we can get the total dynamics equation.</p> 
  
  
 +
<h3><b >Dynamics equation of enzyme absorption</b></h3>
  
 +
<p>The fraction of coverage can be described as:</p>
 +
<p>\[\theta  = \frac{A}{{{A_0}}} = \frac{{{q_E}}}{{{q_{{E_{\max }}}}}}\]</p>
 +
<table style="width:80%;margin-left:200px;margin-bottom:20px">
 +
                           
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>θ</i></td>
 +
                              <td style="width:90%;text-align:left">The fraction of coverage by enzyme on the polymer surface</td>                 
 +
                            </tr>
 +
                            <tr style="width:100%">                       
 +
                              <td style="width:10%;text-align:left"><i>A</i><sub>0</sub></td>
 +
                              <td style="width:90%;text-align:left">The total mass transfer coefficient</td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>A</i></td>
 +
                              <td style="width:90%;text-align:left">Area already covered</td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>q</i><sub>E</sub></td>
 +
                              <td style="width:90%;text-align:left">The content of absorption for enzyme per area on polymer</td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>q</i><sub>E<sub></sub>max</sub></td>
 +
                              <td style="width:90%;text-align:left">The maximum absorption amount </td>
 +
                            </tr>
 +
                           
 +
                 
 +
</table>
  
 +
<p>Because enzymatic catalytic step is a rete controlling step, the absorption on polymer surface is a dynamic balancing process.</p>
 +
<p>Rate of absorption:\[{r_1} = d[ES]/dt = {k_1}[E](1 - \theta )\;\]</p>
  
 +
<p>Rate of desorption:\[{r_2} = d[E]/dt = {k_{ - 1}}\theta \]</p>
 +
<p id="Establishmentofequationfor">From <i>r<sub>1</sub></i>=<i>r<sub>-1</sub></i>, we can get: <i>k<sub>1</sub></i>[E] (1-<i>θ</i>) = <i>k<sub>-1</sub></i><i>θ</i>. Combining with the fraction of coverage we can get:</p>
 +
<p>\[\theta  = \frac{{{q_E}}}{{{q_{{E_{\max }}}}}} = \frac{{{K_A}[E]}}{{1 + {K_A}[E]}}\]</p>
 +
<table style="width:80%;margin-left:200px;margin-bottom:20px">
 +
                           
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>[E]</i></td>
 +
                              <td style="width:90%;text-align:left">The concentration of enzyme]</td>                 
 +
                            </tr>
 +
                            <tr style="width:100%">                       
 +
                              <td style="width:10%;text-align:left"><i>K<sub>A</i></sub></td>
 +
                              <td style="width:90%;text-align:left">Absorption balancing constant</td>
 +
                            </tr>
 +
                         
 +
</table>
  
 
</div>
 
<div class="col-md-7">
 
<div id="ddpx"></div>
 
<h3><b >2. DdpX cell lysis effect<a class="btn popover-info ref-title-link" data-toggle="popover" data-placement="top" title="Reference" data-content="Ivan A. D. Lwssard and Christopher T. Walsh. VanX, a bacterial D-alanyl-D-alanine dipeptidase: Resistance, immunity, or survival function? Proc. Natl. Acad. Sci. USA. Vol. 96, pp. 11028–11032, September, 1999.">[2]</a></b></h3><br/>
 
<p style="font-size:18px">DdpX, namely D-alanyl-D-alanine dipeptidase, is a kind of peptidoglycan hydrolase which can hydrolyze the D-Ala-D-Ala part in peptidoglycan molecule. As we all know, the cell wall of bacterial mainly consists of peptidoglycan, so the ddpX can hydrolyze the cell wall of bacterial.</p>
 
<p style="font-size:18px">It cannot be more strange that many bacterial own this kind of seemly dangerous gene in their genome. In fact, this gene also has many benefits to bacterial. In gram-positive bacterial, Vancomycin, a kind of antibiotics, can cause cell lysis because it can combine the D-Ala-D-Ala residue of peptidoglycan in cell wall and block the cross-linking of peptidoglycan. Some gram-positive bacterial like Enterococcus faecalis and Streptomyces toyocaensis have developed the resistance to the vancomycin because they have VanX gene, the homologue of ddpX gene, which can hydrolyze the D-Ala-D-Ala and transfer the D-Ala-D-Ala residue of peptidoglycan to D-Ala-D-Lac residue so that the vancomycin cannot combine the peptidoglycan.</p>
 
<p style="font-size:18px" id="TPAPositiveFeedbackMechanism">However, in gram-negative bacterial like <i>E.coli</i>, which own the robust outer membrane that can resist the vancomycin, the hydrolase ddpX with the same effects also exists. This is strange because the gram-negative bacterial have no necessity to own this kind of seemly dangerous hydrolase. Actually the ddpX in <i>E.coli</i> has another vital use when they are under starvation conditions. The ddpX can hydrolyze the D-Ala-D-Ala in their cell wall to produce the D-Ala as the carbon source to maintain their life. This mechanism is only carried out when they are under starvation conditions. If the ddpX gene is overexpressed, the cell wall will be damaged and cell lysis will occur. </p>
 
 
</div>
 
</div>
 
<div class="row">
 
<div class="col-md-12">
 
<h3><b >3. TPA Positive Feedback Mechanism<a class="btn popover-info ref-title-link" data-toggle="popover" data-placement="top" title="Reference" data-content="Hirofumi Hara, Lindsay D. Eltis, Julian E. Davies. Transcriptomic Analysis Reveals a Bifurcated Terephthalate Degradation Pathway in Rhodococcus sp. Strain RHA1. Journal of Bacteriology, Mar. 2007, 189(5), 1641–1647.">[3]</a><a class="btn popover-info ref-title-link" data-toggle="popover" data-placement="top" title="Reference" data-content="Molina-Henares, A. J., T. Krell, M. E. Guazzaroni, A. Segura, and J. L. Ramos. 2006. Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol. Rev. 30: 157–186.">[4]</a></b></h3>
 
<br/> <p style="font-size:18px">As we all know, PET is solid in normal condition. So it’s not easy for microorganisms to realize if there is any PET in the environment. For this reason, we designed the following regulating path.</p>
 
<p style="font-size:18px">We aim at finding a way to offer bacterial the ability to sense TPA so that it can produce more enzyme when TPA degraded by PETase exists in the environment.
 
We find the similar mechanism in the <i>Rhodococcus jostii RHA1</i>, which can make use of TPA as carbon source. We speculate that there must be the pathway we want in the <i>Rhodococcus jostii RHA1</i>. By the way, RHA1 is also well used in microbial consortia part of our project. In<i> Rhodococcus</i>, the distinct expression patterns of the TPA gene clusters indicate that they are independently regulated. The cluster contains gene encoding putative regulatory protein, namely tpaR. This gene encodes the regulatory protein of the IclR family, based on the presence of a conserved signature region. The regulator has helix-turn-helix domain and encodes regulator for its respective operons, which is consistent with the case for IclR-type regulatory proteins for other aromatic catabolism pathways. IclR-type positive regulators bind a sequence before their promoter DNA in the existence of inductor and start the transcription of downstream gene, so we need to express the regulator too.<a class="btn popover-info ref-title-link" data-toggle="popover" data-placement="top" title="Reference" data-content="Molina-Henares, A. J., T. Krell, M. E. Guazzaroni, A. Segura, and J. L. Ramos. 2006. Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol. Rev. 30: 157–186.">[4]</a> Then the gene followed the promoter will be regulated by TPA.
 
We find a promoter from the upstream of a gene named tpaAa regulated by TPA. It will express 300 times more when TPA exist. So we plan to transform the three genes into <i>Saccharomyces cerevisiae</i>. They respectively encode TPA transporter, TPA regulation protein and RFP bonded with the TILS. Then we can detect the intension of the red signal to measure the expression of the protein in distinct concentrations of TPA. </p>
 
  
 +
<p>The above equation is Langmuir equation</p>
 +
<h3><b >Establishment of equation for rate of total degradation of PET</b></h3>
 +
<p>After absorption to the surface, the combination and escape is a dynastic balancing process because of the competitive substrate.</p>
 +
<p>\[{k_3}[ES][P] = {k_{ - 3}}[ESP]\]</p>
 +
<table style="width:80%;margin-left:200px;margin-bottom:20px">
 +
                           
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>[ES]</i></td>
 +
                              <td style="width:90%;text-align:left">The concentration of enzyme absorbed</td>                 
 +
                            </tr>
 +
                            <tr style="width:100%">                       
 +
                              <td style="width:10%;text-align:left"><i>[P]</i></td>
 +
                              <td style="width:90%;text-align:left">The concentration of MHET</td>
 +
                            </tr>
 +
                            <tr style="width:100%">                       
 +
                              <td style="width:10%;text-align:left"><i>[ESP]</i></td>
 +
                              <td style="width:90%;text-align:left"> The concentration of enzyme combined with MHET</td>
 +
                            </tr>
 +
                         
 +
</table>
 +
<p>\[[ESP] = {K_B}[ES][P]\]</p>
 +
<table style="width:80%;margin-left:200px;margin-bottom:20px">
 +
                           
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>K</i><sub>B</sub></td>
 +
                              <td style="width:90%;text-align:left">Constant of substrate restraint balance</td>                 
 +
                            </tr>
 +
                         
 +
</table>
 +
<p>The enzymatic degradation is interfacial reaction before degradation in large scale. So the rate of degradation of polymer, the absorbed enzyme amount, the inactive combined enzyme mount, the density of ester bond on polymer surface and the superficial area have the following relation:</p>
 +
<p>\[v =  - \frac{{d{n_{\exp }}}}{{dt}} = A \cdot {k_2} \cdot {\rho _{EB}}({q_E}A - {n_E})\]</p>
 +
<table style="width:80%;margin-left:200px;margin-bottom:20px">
 +
                           
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>v</i></td>
 +
                              <td style="width:90%;text-align:left">The rate of degradation[mol/min]</td>                 
 +
                            </tr>
 +
                            <tr style="width:100%">                       
 +
                              <td style="width:10%;text-align:left"><i>t</i></td>
 +
                              <td style="width:90%;text-align:left">Time[min]</td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>k</i><sub>2</sub></td>
 +
                              <td style="width:90%;text-align:left">Constant of degradation rate [cm3/(min•mg)]</td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>A</i></td>
 +
                              <td style="width:90%;text-align:left">Superficial of polymer[cm2]</td>
 +
                            </tr>
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>n</i><sub>E</sub></td>
 +
                              <td style="width:90%;text-align:left">The inactive combined enzyme mount[mol]</td>
 +
                            </tr>
 +
                           
 +
                 
 +
</table>
  
 +
<p>Connecting with the absorption balance and the substrate restrain balance, we can get the total rate of degradation equation:<p>
 +
<p>\[v = {k_2}{\rho _{EB}}(\frac{{{K_A}[E]{q_{{E_{\max }}}}A}}{{1 + {K_A}[E]}} - {K_A}{K_B}{[E]^2}[P] \cdot V)\]</p>
 +
<table style="width:80%;margin-left:200px;margin-bottom:20px">
 +
                           
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left"><i>V</i></td>
 +
                              <td style="width:90%;text-align:left">The volume of the system</td>                 
 +
                            </tr>
 +
                         
 +
</table>
  
</div>
+
<p>With mass conservation, we can get:<p>
 +
<p>\[{E_p} = E + ES + ESP\]
 +
\[[E] = \frac{{[{E_P}]}}{{1 + {K_A} + {K_A}{K_B}[P]}}\]<p>
 +
<table style="width:80%;margin-left:200px;margin-bottom:20px">
 +
                           
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left">[<i>E</i><sub>p</sub>]</td>
 +
                              <td style="width:90%;text-align:left">The concentration of enzymes on the plastic surface</td>                 
 +
                            </tr>
 +
                         
 +
</table>
 +
<p>Because the concentration of enzyme is low in the system and the producing rate of MHET is equal to the rate of PET degradation, we can get the following formula:</p>
  
  
 +
<p>\[\theta  = {K_A}[E]\]
 +
\[\, - \frac{{d{n_{\exp }}}}{{dt}} = \frac{{Vd[P]}}{{dt}}\]</p>
  
+
<p>Considering that MHET in substrate restrain is easy to diffuse to liquid, which means the balance is small, we can get the final equation for plastic degradation:</p>
 +
<p>\[v = \frac{{d[P]}}{{dt}} = \frac{{{k_2}{\rho _{EB}}}}{V}(\frac{{{K_A}[EP]{q_{{E_{\max }}}}A}}{{1 + {K_A} + {K_A}{K_B}[P]}} - \frac{{{K_A}{K_B}{{[{E_P}]}^2}[P]}}{{{{(1 + {K_A})}^2}}})\]</p>
  
+
<p>The above equation is differential whose only variable is the concentrate of MHET. So we can transform the equation as the following form:</p>
                        </div>
+
<p>\[\frac{{d[P]}}{{dt}} = \frac{a}{{[P]}} - b[P]\]</p>
                       
+
<p>Both a and b here are constants.</p>
<hr>
+
<p>The concentration of MHET is 0 initially. Solve the above differential equation, we can get the curves of the rate of PET degradation as following:</p>
<h2  id="ConstructionofReportingSystem"><b>Experiment Design</b></h2>
+
 
+
 
+
<div class="row">
+
<div class="col-md-5">
+
<h3><b >1. Construction of Reporting System</b></h3>
+
<br/> <p style="font-size:18px">We use a common expression vector plasmid, pUC19, in <i>E.coli</i> to load our device, which consists of heterologous gene part (in this circumstance, PETase gene) and inclusion body reporting part. First of all, we transform the plasmid with part <i><i>BBa_K339007</i></i> from the kit shipped to us using the protocol in the instruction from iGEM official website. Then we use PCR to amplify this part with restriction endonuclease cutting sites <i>Xba1</i> and <i>Pst1</i> respectively on sense and anti-sense primers. Then we use corresponding restriction endonuclease to cut the part and plasmid pUC19 and then use T4 DNA ligase to link them together. The next step is to transform the PETase gene into the same plasmid. The initial gene synthetized does not has promoter and terminator so it cannot express. We have to cut the PETase gene and plasmid pET21A with <i>BamH1 </i> and Sal1 enzyme and link them together to transform the PETase gene into pET21A and then use PCR to amplify the T7 promoter-PETase gene-T7 terminator fragment added the restriction endonuclease cutting sites <i>EcoR1 </i> and Sac1. In this way, after we cut the recombinant plasmid pUC19 and T7 promoter-PETase gene-T7 terminator fragment with corresponding restriction endonucleases and link them together, we can obtain the complete device we want. </p>
+
 
+
 
+
</div>
+
<div class="col-md-7">
+
<br/><br/><br/><br/><br/><br/><br/><br/>
+
  
  
 
<div align="center">
 
<div align="center">
  <figure >
+
  <figure id="CellLysisBasedRegulationSystem">
     <a href="https://static.igem.org/mediawiki/2016/4/4e/T--Tianjin--R-R_system6.jpg" data-lightbox="no" data-title="Fig.7. The construction process of our reporting system"><img src="https://static.igem.org/mediawiki/2016/4/4e/T--Tianjin--R-R_system6.jpg" width="100%"></a>
+
     <a href="https://static.igem.org/mediawiki/2016/c/cf/T--Tianjin--Fig.4_Curve_of_PET_degradation_rate_when_enzyme_concentration_keeps_unchanged.jpg" data-lightbox="no" data-title="Figure 4 curves of the rate of PET degradation when the concentration of enzyme is constant"><img src="https://static.igem.org/mediawiki/2016/c/cf/T--Tianjin--Fig.4_Curve_of_PET_degradation_rate_when_enzyme_concentration_keeps_unchanged.jpg" width="70%"></a>
  <figcation>Fig.7. The construction process of our reporting system</figcaption>
+
</figure>
    </figure>
+
 
</div>
 
</div>
<br/><br/><br/><br/><br/><br/><br/><br/>
 
<div id="VerificationofRFP"></div>
 
  
  
 +
<p id="TheWholeSystem">From the above figure, enzymes get to the absorption balance and get the biggest rate of degradation. But the rate get down gradually with substrate restrain.</p>
 +
<hr>
 +
<!----------------------------------------------------------------->
 +
<h2><b id="rateconsideringtheprocess">Solution of PET Degradation Rate Considering The Whole System</b></h2>
 +
<h3><b >Solution of PET degradation rate considering the process of cells secrete protein</b></h3>
  
 
+
<p>We have got the rate of enzyme production by connecting with the growth process of cells before. Substitute it into the total equation of PET degradation rate then we can get the rate of PET degradation with cells. Marge constants:</p>
 
+
<p>\[v = \frac{{c[{E_P}]}}{{d + e[P]}} - f{[{E_P}]^2}[P]\]
                        </div>
+
\[v = g[{E_P}] - h{[{E_P}]^2}\]</p>
                          </div>
+
<p>c,d,e,f,g,h here are constants.</p>
<div class="col-md-12">
+
<h3><b>2. Verification of RFP in the part <i><i>BBa_K339007</i></i></b></h3>
+
<p style="font-size:18px" id="MethodofRedFluorescenceAssay"
+
>The verification of RFP is carried out by using PCR to amplify the RFP gene with restriction endonuclease cutting sites <i>Xba1</i> and Sac1 added and then cut the RFP and plasmid pET21a with corresponding restriction endonuclease. Then the cut fragments are linked together and transformed into <i>E.coli</i> to express. Then we can detect the red fluorescence.</p>
+
 
+
</div>
+
 
+
 
+
<div class="col-md-12">
+
<h3><b id="CultureandExpressionCondition" >3. Method of Red Fluorescence Assay</b></h3>
+
<p style="font-size:18px">The red fluorescence is detected by 96-well Microplate Reader. The excitation wavelength is set at 584nm and the emission wavelength is set at 607nm. Considering the RFP has an advantage that it can be directly observed by bare eyes, we also use centrifugation to precipitate the bacterial and observe the color of sediment. The red color can be observed if the RFP is expressed. All the experiment including the latter mentioned regulation system use this assay method.</p>
+
 
+
</div>
+
 
+
 
+
<div class="col-md-12">
+
<h3><b id="ConstructionofCellLysis" >4. Culture and Expression Condition of <i>E.coli</i> in this experiment</b></h3>
+
<p style="font-size:18px">Tradition culture medium LB (5g/L yeast extracts, 10g/L peptone, 10g/L NaCl) is also used by us. Because of the ampicillin resistance gene in the plasmid pUC19 and pET21A, ampicillin (100μg/mL) is added to screen for the correctly transformed bacterial. 5mL bacterial are cultured in test tube at 37℃ with 200rpm shaking speed. IPTG is added to induce the expression of PETase gene after 6 hours.</p>
+
 
+
</div>
+
 
+
 
+
<div class="row">
+
<div class="col-md-7">
+
 
+
 
+
 
+
<br/><br/><br/><br/><br/><br/><br/><br/>
+
 
+
 
<div align="center">
 
<div align="center">
  <figure>
+
  <figure id="CellLysisBasedRegulationSystem">
     <a href="https://static.igem.org/mediawiki/2016/b/bd/T--Tianjin--R-R_system7.jpg" data-lightbox="no" data-title="Fig.8. The construction process of our cell lysis based regulation system"><img src="https://static.igem.org/mediawiki/2016/b/bd/T--Tianjin--R-R_system7.jpg" width="100%"></a>
+
     <a href="https://static.igem.org/mediawiki/2016/7/76/T--Tianjin--Fig.5_Curve_of_PET_degradation_rate_when_cells_are_growing_along_with_the_enzyme_secretion.jpg" data-lightbox="no" data-title="Figure 5 curves of PET degradation rate when cells grow up while secrete enzymes"><img src="https://static.igem.org/mediawiki/2016/7/76/T--Tianjin--Fig.5_Curve_of_PET_degradation_rate_when_cells_are_growing_along_with_the_enzyme_secretion.jpg" width="70%"></a>
  <figcation>Fig.8. The construction process of our cell lysis based regulation system</figcaption>
+
</figure>
    </figure>
+
 
</div>
 
</div>
<br/><br/>
+
<script type="text/javascript"    src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<div id="VerificationofddpXGeneEffect"></div>
+
<p id="Rateofthewholeprocess">From the above figure, the rate of degradation without competitive restrain is pretty lower than it with competitive restrain. When there is competitive restrain, the change of degradation rate can be divided into three stages. First, the absorption controlling stage at which the absorption amount of enzyme increases with its secretion. Second, the secretion controlling stage at which the secretion rate gets to saturation because of the saturation of cell growth. Finally, PET degradation rate settle out because of both the two factor, mostly because the absorption gets its saturation.</p>
 +
<h3><b >Rate of the whole process for cells to secrete and degrade in heterogeneous phase</b></h3>
  
 +
<p>We just calculated the enzymatic degradation rate while ignored the transmission in the liquid. The transmission will lead to loss of the effective enzyme and latency of arrival for enzyme to PET surface. Connecting these two factor with the above total equation and substitute constants we can get:</p>
 +
<p>\[v = \frac{{c[EP](t - T)}}{{d + e[P](t)}} - f{([EP](t - T))^2}[P](t)\]</p>
 +
<table style="width:80%;margin-left:200px;margin-bottom:20px">
 +
                           
 +
                            <tr style="width:100%">
 +
                              <td style="width:10%;text-align:left">[<i>E</i><sub>p</sub>](t-T)</td>
 +
                              <td style="width:90%;text-align:left">The concentration on PET surface is a function of time t-T</td>                 
 +
                            </tr>
 +
                            <tr style="width:100%">                       
 +
                              <td style="width:10%;text-align:left">[<i>P</i>](t)</td>
 +
                              <td style="width:90%;text-align:left">The concentration of MHET is a function of time t]</td>
 +
                            </tr>
 +
                         
 +
</table>
  
 
+
<p>Solve the above equation, then we get the curves of PET degradation rate in heterogeneous phase.</p>
+
</div>
+
<div class="col-md-5">
+
<h3><b >5. Construction of Cell Lysis Based Regulation System</b></h3><br/>
+
<p style="font-size:18px">This system has a great similarity to the reporting system above. Therefore it is easy to construct because we only need to change the RFP gene to the ddpX gene. However, there is no restriction endonuclease cutting site between the CpxR and RFP gene sequence according to the part map from the iGEM official website, so we have to use PCR to amplify the CpxR promoter solely and add restriction endonuclease cutting sites <i>Xba1</i> and <i>BamH1 </i> respectively in both end. The ddpX gene is obtained from the <i>E.coli</i> genome using colony PCR and the <i>BamH1 </i> and <i>EcoR1 </i> restriction endonuclease cutting sites are added respectively to both end. Then the three fragments, CpxR promoter, ddpX gene, and cut plasmid pET21a are linked together. Then the whole part is amplified by PCR with <i>Xba1</i> and <i>Pst1</i> restriction endonuclease cutting sites added respectively to both end. This way, we can easily cut down the former CpxR-RFP fragment and add the new CpxR-ddpX fragment to the plasmid pUC19. </p>
+
 
+
+
</div>
+
</div>
+
 
+
           
+
<div class="col-md-12">
+
<h3 id="MethodofCellLysisAssay"><b>6. Verification of ddpX Gene Effect</b></h3>
+
<p style="font-size:18px">Just like the verification of RFP mentioned before, the verification of ddpX is carried out in the similar way. The pET21a plasmid is cut by <i>BamH1 </i> and <i>EcoR1 </i> instead of <i>Xba1</i> and <i>EcoR1 </i>, so that the ddpX can be linked to the cut plasmid pET21a solely. Then we can detect if the cell lysis occurs.</p>
+
 
+
</div>   
+
 
+
<div class="col-md-12">
+
<h3><b id="ChassisselectionforTPAPositive">7. Method of Cell Lysis Assay</b></h3>
+
<p style="font-size:18px">Cell lysis can be reflected by the OD<sub>600</sub> of culture medium. The lower the value of OD<sub>600</sub> is than the wild type <i>E.coli</i> at the same condition, the stronger the cell lysis effect will be. The OD<sub>600</sub> is detected by 96-well Microplate Reader. In order to know the OD<sub>600</sub> value continuously, the detection process works through the time of bacterial growth and we will obtain the OD<sub>600</sub>-Growing time curve. </p>
+
 
+
</div>
+
 
+
<div class="col-md-12">
+
<h3><b id="ConstructionofTPAPositiveFeedback" >8. Chassis selection for TPA Positive Feedback Based Regulation System</b></h3>
+
<p style="font-size:18px">As the explanation before, the TPA positive feedback system is derived from the TPA degradation metabolic pathway in <i>Rhodococcus jostii RHA1</i>. Considering the difficulty of conducting gene-scale operation in this unusual organism, we directly synthetize all the gene including tpaK, tpaR, and TILS. At first we want to use <i>E.coli</i> to test this device because of the easy and familiar operation. However, in this situation, we have to transform at least 3 plasmids and this cannot be more difficult for <i>E.coli</i>. Therefore, we use another familiar organism, <i>Saccharomyces cerevisiae</i>, as the chassis. In the preliminary experiment, we successfully transform 3 plasmids into <i>Saccharomyces cerevisiae</i>. </p>
+
 
+
</div>   
+
 
+
 
+
<div class="row">
+
<div class="col-md-5">
+
<h3><b>9. Construction of TPA Positive Feedback Based Regulation System</b></h3>
+
<br/> <p style="font-size:18px">We use common plasmids of <i>Saccharomyces cerevisiae</i>, pRS413, pRS415 and pYES2, to respectively load the TPA transporting protein gene, TPA regulation protein gene and TPA induced RFP gene. First of all, we use PCR to amplify all of these fragments and add different restriction endonuclease cutting sites. Then we cut the plasmids with corresponding restriction endonucleases. Then these cut fragments are linked according to the designed order and transformed into <i>Saccharomyces cerevisiae</i>. We screen for the correctly transformed cell by using the Sc-Ura-Leu-His plate.</p>
+
 
+
 
+
</div>
+
<div class="col-md-7">
+
<br/><br/><br/><br/>
+
  
 
<div align="center">
 
<div align="center">
  <figure>
+
  <figure id="CellLysisBasedRegulationSystem">
     <a href="https://static.igem.org/mediawiki/2016/a/a1/T--Tianjin--R-R_system8.jpg" data-lightbox="no" data-title="Fig.9. The construction process of our TPA Positive Feedback Based regulation system"><img src="https://static.igem.org/mediawiki/2016/a/a1/T--Tianjin--R-R_system8.jpg" width="100%"></a>
+
     <a href="https://static.igem.org/mediawiki/2016/9/9f/T--Tianjin--Fig.6_Curve_of_rate_change_of_PET_degradation_by_secretory_proteins_in_a_heterogeneous_system.jpg" data-lightbox="no" data-title="Figure 6 PET degradation rate of protein secreted by cells in heterogeneous phase"><img src="https://static.igem.org/mediawiki/2016/9/9f/T--Tianjin--Fig.6_Curve_of_rate_change_of_PET_degradation_by_secretory_proteins_in_a_heterogeneous_system.jpg" width="70%"></a>
  <figcation>Fig.9. The construction process of our TPA Positive Feedback Based regulation system</figcaption>
+
</figure>
    </figure>
+
 
</div>
 
</div>
<br/><br/><br/>
 
<div  id="CultureandExpressionConditionsc"></div>
 
  
                        </div>
 
                          </div>
 
  
 +
<p id="ConclusionandProspect">From the figure above , the change of degradation rate can be divided into three stages no matter if there is liquid transmission.  And the liquid transmission effect the second stage most, at which cells grow up and secret more. The liquid transmission effect less on absorption controlling stage and saturation stage. That can be reasonable because absorption is just related to the concentration of enzyme on the PET surface. And enzymes secreted by cells can only get to plastic surface  through liquid transmission in secretion controlling stage.</p>
  
<div class="col-md-12">
+
<hr>
<h3><b  id="FormerBiobrickVarification">10. Culture and Expression Condition of <i>Saccharomyces cerevisiae</i> in this experiment</b></h3>
+
<p style="font-size:18px">Traditional YPD culture medium (22g/L glucose, 20g/L peptone, 10g/L yeast extracts) is used by us. Sc-Ura-Leu-His culture medium (22g/L glucose, 6.7g/L yeast nitrogen base, 1.224g/L nutrient deficiency mixture without Ura, His, Leu and Trp, 5mg/L Trp) is used to screen for correctly transformed cell. All the cells are cultured in 5mL medium at 30℃ with shaking speed of 200rpm. To induce the expression of RFP, we add TPA with different concentration. We first make up TPA standard solution with TPA concentration of 5g/L. Then we respectively add 0, 1μL, 10μL, 100μL, 1mL standard solution to the culture medium. </p>
+
  
</div> 
+
<!----------------------------------------------------------------->
<hr>
+
<h2><b >Conclusion and Prospect</b></h2>
<div class="col-md-12">
+
<p style="margin-bottom:50px">
<h2><b >Former Biobrick Varification</b></h2>
+
We begin to build our models above from the process analysis of PET degradation in heterogeneous system. We construct models for each step and finally deduce the rate curve of  PET degradation by the enzymes secreted by bacteria in heterogeneous system.From this curve we can see that the degradation can be devided into 3 parts.In the first part, degradation rate is under the control of bacteria growth and enzyme secretion.In the second part, it is controlled by the mass transfer of enzyme in the liquid phase.In the third part, it is controlled by the catalytic ability of enzymes adsorbed on the PET surface .From the trend of the curve we can conclude that, in order to degrade PET with a higher rate or make the rate peak as soon as possible,what we first need to do is to promote the growth of bacteria.This will enhance the enzyme concentration.On the other hand, we can accelerate the diffusion of enzymes in the liquid phase.For example,shake cultivation or stirred culture,can eliminate the influence of time delay and make the degradation rate reach the peak fast.Our system assumes that PET degradation only takes place on the surface of PET.Although it's reasonable,as the degradation proceeds, small gaps will form on the plastics due to degradation.If they become so large that enzymes can diffuse into the interior of PET,degradation process will be accelerated to a huge extent.The next step of building models is to take the process and threshold value of internal diffusion into consideration.This will provide a more accurate model to describe the process of PET degradation in the heterogeneous system.
 +
</p>
 +
<hr>
  
<p style="font-size:18px"  id="ExpectedResults">We applied the former part <a href="http://parts.igem.org/Part:BBa_K339007" target="_blank"><i>BBa_K339007</i></a> constructed by iGEM10_Calgary in our R-R system. This composite part consists of a CpxR responsive promoter (<a href="http://parts.igem.org/Part:BBa_K135000" target="_blank"><i>BBa_K135000</i></a>), a ribosome binding site (<a href="http://parts.igem.org/Part:BBa_B0034" target="_blank"><i>BBa_B0034</i></a>), a mRFP gene (<a href="http://parts.igem.org/Part:BBa_E1010" target="_blank"><i>BBa_E1010</i></a>), and two terminators (<a href="http://parts.igem.org/Part:BBa_B0010" target="_blank"><i>BBa_B0010</i></a> and <a href="http://parts.igem.org/Part:BBa_B0012" target="_blank"><i>BBa_B0012</i></a>). The CpxR responsive promoter can respond to the CpxR protein which appears when there are misfold protein in the periplasm of the E.coli and start the transcription of the downstream mRFP gene so that the red fluorescence can be detected. <br/>
+
<!----------------------------------------------------------------->
We applied this part in our reporting system. We transformed the PETase gene together with this part and induced the expression of the PETase gene. To make the reporting effect visible. We centrifuged the culture medium with the speed of 12000rpm for 1min, and directly observed by bare eyes.<br/>
+
<h2><b id="Refenerce">Refenerce</b></h2>
  
 +
<p>[1] Ma Mengmeng. Studies on Enzymatic Degradation of Polymer Nanoparticles and Adsorption Mechanism of Enzymes on Nanoparticles [D]. Tianjin: School of Chemical Engineering and Technology,Tianjin University,2004</p>
 +
<p>[2] Liu Bin. High-density Fermentation of Genetically Engineered Pichia pastoris Expressing Recombinant Human-source Collagen [D]. Nanjing: Nanjing University of Science & Technology,2012</p>
 +
<p>[3] Chen Li, Wang Yue, Guo Meijin,et al.Kinetic modelling of porcine insulin precursor (PIP) expressed by multi-copy recombinant Pichia pastoris [J]. CIESC Journal, 2016, 67(5):2015-2021</p>
 +
<p>[4] Chen Tao, Zhang Guoliang. Chemical transfer process foundation[M]. Beijing: Chemical Industry Press,2009</p>
 +
<p>[5] Jia Shaoyi, Chai Chengjing. Chemical mass transfer and separation process[M].Beijing: Chemical Industry Press,2007</p>
 +
<p>[6] Tan Tianwei. Biochemical Engineering[M].Beijing: Chemical Industry Press,2008</p>
 +
<p>[7] Li Songlin, Zhou Yaping, Liu Junji.Physical chemistry[M]. Higher Education Press, 2009</p>
 +
<p>[8] Li Shaofen.Chemical Reaction Engineering[M]. Beijing: Chemical Industry Press,2012</p>
 +
<hr>
  
Therefore, when the exogenous gene overexpress in the E.coli, the CpxR induced mRFP gene also express and lead to the emission of red fluorescence. The little red fluorescence in the bacterial without transformed into the PETase gene is largely likely to be caused by the basic expression of CpxR protein in the E.coli. However, when the exogenous gene overexpress, the formed inclusion body can significantly increase the expression of CpxR protein to induce the expression of mRFP. </p>
+
<div style="margin-bottom:50px"></div>
   
+
<h2><b>Expected Results</b></h2>
+
 
+
<p style="font-size:18px" id="References">PETase and MHETase are two key enzymes in our project. However, as heterologous proteins, the expression of these two enzymes face many problems just like expressing other heterologous proteins before including the formation of inclusion body, the lack of regulation pathway, etc. We design this R-R system in order to express the two enzymes visibly and regularly. </p>
+
  
<li><p style="font-size:18px">First, we hope to directly observe the expression condition of our enzyme by color, when the inclusion body form, which means the overexpressing, the red color can be observed. </p></li>
 
  
<li><p style="font-size:18px">Second, when inclusion body form, the normal way to solve this problem is to use lysozyme and ultrasonic to break the cell and purify the protein, which is complex and time-consuming. We expect the cell lysis will automatically occur when the inclusion body form by using ddpX gene.  </p></li>
 
  
<li><p style="font-size:18px">Third, we expect the chassis organism can sense the existence of TPA, the hydrolyze product of PET and using TPA as the induction of PETase gene. Thus if the degradation process start, this process can be even enhanced until the PET is used up.</p></li> 
 
<hr>
 
<h2><b >References</b></h2>
 
<p style="font-size:16px"><i>[1]Physiologie der Mikroorganismen, Humboldt Universitat zu Berlin, Chausseestr. Misfolded maltose binding protein MalE219 induces the CpxRA envelope stress response by stimulating phosphoryl transfer from CpxA to CpxR. Research in Microbiology 160 (2009) 396-400.<br/><br/>
 
[2]Ivan A. D. Lwssard and Christopher T. Walsh. VanX, a bacterial D-alanyl-D-alanine dipeptidase: Resistance, immunity, or survival function? Proc. Natl. Acad. Sci. USA. Vol. 96, pp. 11028–11032, September, 1999.<br/><br/>
 
[3]Hirofumi Hara, Lindsay D. Eltis, Julian E. Davies. Transcriptomic Analysis Reveals a Bifurcated Terephthalate
 
Degradation Pathway in Rhodococcus sp. Strain RHA1. Journal of Bacteriology, Mar. 2007, 189(5), 1641–1647.<br/><br/>
 
[4]Molina-Henares, A. J., T. Krell, M. E. Guazzaroni, A. Segura, and J. L. Ramos. 2006. Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol. Rev. 30: 157–186.</i></p><br/><br/>
 
  
  </div>
 
<hr>
 
  
 +
</div>  <!--  assumptions -->
  
  
<!--              copy start        -->
 
<div class="col-md-1"></div>
 
<div class="col-md-2 text-center">
 
<a type="button" class="btn btn-next" href="https://2016.igem.org/Team:Tianjin/Note/R-R"><img src="https://static.igem.org/mediawiki/2016/e/e7/T--Tianjin--button_note.png" width="120px"><p>See our Notes</p></a>
 
</div>
 
<div class="col-md-6"></div>
 
<div class="col-md-2 text-center">
 
<a type="button" class="btn btn-next" href="https://2016.igem.org/Team:Tianjin/Demonstrate#rrsystem"><img src="https://static.igem.org/mediawiki/2016/e/e1/T--Tianjin--button_result.png" width="120px"><p>See our Results</p></a>
 
</div>
 
<div class="col-md-1"></div>
 
  
<!--          copy end          -->
 
  
<!--    连接到experiment,img src="https://static.igem.org/mediawiki/2016/b/b6/T--Tianjin--button_expt.png"
+
        连接到note,    img src="https://static.igem.org/mediawiki/2016/e/e7/T--Tianjin--button_note.png"
+
</div>
        连接到result,  img src="https://static.igem.org/mediawiki/2016/e/e1/T--Tianjin--button_result.png"
+
                     
        当然文字改成相应的See our ……
+
        如果跳转到某页面,href="页面地址" 如果跳转到某页面的某处,先在那个页面的位置加id="XXX",如<div id="XXX"></div>
+
        再在这里写href="页面地址#XXX"
+
-->
+
  
  
  
</div>
 
 
<div class="col-md-12" style="height:100px"></div>
 
 
<!-- section end -->
 
 
<!-- section start -->
 
<!-- ================ -->
 
  
  
Line 434: Line 615:
 
    
 
    
 
    
 
    
 +
 +
<script type="text/javascript">
 +
 +
$(function(){
 +
 +
$("#list li").click(function(){
 +
$("#list li.active").removeClass("active")
 +
$(this).addClass("active");
 +
})
 +
})
 +
</script>
 +
 +
  <div class="sideNavbar" style="{border-color: #03a9f4}">
 +
    <div id="jquery-accordion-menu" class="jquery-accordion-menu blue ">
 +
 +
<ul id="list">
 +
 +
 +
 +
<li><a href="#ModelOverview">Model Overview  </a>
 +
<ul class="submenu">
 +
<li><a class="topLink" href="#Assumptions">Assumptions</a></li>
 +
<li><a class="topLink" href="#Summary">Summary</a></li>
 +
</ul>
 +
</li>
 +
 +
 +
<li><a class="topLink" href="#TheFormulasfor">Evaluating indexes</a></li>
 +
 +
<li><a href="#TheEquationforThe">Cell growth</a>
 +
<ul class="submenu">
 +
<li><a class="topLink" href="#Thekineticsofcellgrowth">Assumptions</a></li>
 +
<li><a class="topLink" href="#Theformationdynamics">PETase Formation dynamics</a></li>
 +
</ul>
 +
</li>
 +
 +
<li><a href="#TheTransferProcess">Transfer Process</a>
 +
<ul class="submenu">
 +
<li><a class="topLink" href="#Themasstransferprocess">From Cell boundary to Liquid phase</a></li>
 +
<li><a class="topLink" href="#Masstransferprocessofenzymes">From Liquid phase to PET surface</a></li>
 +
<li><a class="topLink" href="#Totaldiffusionrateequation">Total diffusion rate</a></li>
 +
<li><a class="topLink" href="#Timelosscaused">Time loss</a></li>
 +
</ul>
 +
</li>
 +
 +
<li><a href="#TheprocessofPETase">Enzymes catalyzeing PET</a>
 +
<ul class="submenu">
 +
<li><a class="topLink" href="#Establishmentofdynamics">PET degradation dynamics</a></li>
 +
<li><a class="topLink" href="#Dynamicsequationof">Enzyme absorption</a></li>
 +
<li><a class="topLink" href="#Establishmentofequationfor">Total degradation rate</a></li>
 +
</ul>
 +
</li>
 +
 +
<li><a href="#TheWholeSystem">Degradation rate solution</a>
 +
<ul class="submenu">
 +
<li><a class="topLink" href="#rateconsideringtheprocess">considering secrete protein</a></li>
 +
<li><a class="topLink" href="#Rateofthewholeprocess">The whole process rate</a></li>
 +
</ul>
 +
</li>
 +
 +
<li><a class="topLink" href="#ConclusionandProspect">Conclusion and Prospect</a></li>
 +
 +
 +
<li><a class="topLink" href="#Refenerce">Refenerce</a></li>
 +
 +
 +
   
 +
 +
</div>
 +
  <div class="sideNavCtrl"><div class="btn btn-info btn-raised sideNavShowBtn" id="sideNavShowBtn">Hide Navigation</div></div>
 +
  </div>
 +
 +
  
  
Line 480: Line 734:
 
</script>
 
</script>
  
<!-- MathJax (LaTeX for the web) -->
+
</div>
<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_SVG.js">
+
</script>
+
<script type="text/x-mathjax-config">
+
MathJax.Hub.Config({
+
        SVG: { linebreaks: { automatic: true } }
+
});
+
</script>
+
+
 
+
 
 
 
</body>
 
</body>
Line 497: Line 742:
  
  
 
+
{{:Team:Tianjin/Templates/AddJS|:Team:Tianjin/Model/math.js}}
 
{{:Team:Tianjin/Templates/Sponsor|}}
 
{{:Team:Tianjin/Templates/Sponsor|}}

Latest revision as of 01:16, 20 October 2016

TEAM TIANJIN



Heterogenous Degradation By PETase

Model Overview

In our experiment we use engineered bacteria as machines to secrete PETase to degrade PET.At first the bacteria secrete PETase ,and then enzymes diffuse into liquid phase body from the cell surface ,from liquid to the surface of PET successively.PETase adsorbs on PET during which process the substrate binding sites of PETase contact with the surface.Finally PETase finds catalytic sites on plastics and combine them with its active center.Ester bonds are broken and chains in PET are ruptured,resulting in the degradation of PET.

Assumptions

1. There exists feedback inhibition regulation in the growing process of a single bacteria. Unlimited growth of population growth can’t be supported due to the limitation of space and resources in a certain environment. When the population of individual bacterium has too much increased, the environment degrades and the average resource share declines, resulting in reduction in birth rate while mortality rate is increasing. Consequently it is reasonable to assume that there exists feedback inhibition regulation due to the influence of environmental factors.

2. A cell can be roughly considered as a sphere.

3. Enzymes are in the dynamic equilibrium when transferring in the liquid phase.

4. The resistance of enzymes’ spread from liquid body to the surface of PET is much larger than that of from the cells’ surroundings to liquid body.

5. It takes several steps for the enzymes to complete the degradation of PET. Enzymes have the substrate binding sites and active centers. We assume that the enzymes are firstly combined with the polymer substrate through their own substrate binding sites, and then the active centers catalyzed the degradation of the polymers.

6. The degradation of PET takes place on the surface of PET.

7. The mass transfer of enzymes in the liquid phase will cause some of them to stay in the liquid body and the delay of enzyme concentration changes on the PET surface.

Summary

Based on the assumptions above and the description of PET degradation process in a heterogeneous system, we first establish the equation of measuring how much percent the PET degrades and how much the degrading rate is. Then we use the simple but mature Logistic Equation to describe the process of cell growth, and Leudeking-Piret Equation which is a correlation between cell growth rate and product producing rate, to describe the kinetic process of PETase production. Then we use the general method of describing mass transfer process to establish mass transfer rate equation when enzymes diffuse from the cell surface to liquid phase body then from liquid phase body to the PET surface, and the distribution equation of enzyme concentration, respectively.

From those equations we can get the total mass transfer rate equation of the enzymes in a heterogeneous system. We analyze and then make a conclusion that the mass transfer diffusion mainly leads to the delay of enzyme concentration change on the PET surface .Finally, taking that MHET, the product of PET degradation, will show competitive inhibition effect into consideration, based on the adsorption equilibrium of PETase on the PET surface, we use the steady state approximation theory and deduce the total kinetic equation of PETase degrading PET. Solve this differential equation we obtain the degradation rate curve of PET under heterogeneous system.


The Formulas for Calculating Biodegradation Percentage and The Degradation Rate

Since our project aims to degrade PET, we need to propose a stable index to measure the degree of degradation of the plastics and another one to measure the degradation rate. Here we choose to describe degradation rate and percentage.

The role of PETase plays in the degradation is to catalyze the cleavage of ester bonds between TPA and EG. This cleavage will directly lead to the decomposition of whole polymer chain and finally the instability of plastics. Thus we choose the ester bond number as an index to evaluate this degradation process.

The calculation formula for calculating the number of moles of ester bonds (namely the number of moles when polymers are completely degraded):

$${n_{EB}} = {n_{EB/{M_{rep}}}} \cdot m/{M_{rep}} $$

nEB The mole number of the broken ester bonds in theory(μmol)
m Loading amount of the polymer (μg)
Mrep The molar mass of the repeat units in the polymer(μg/μmol)
nEB/Mrep The number of ester bonds in a repeat unit

The percentage of degradation of ester bonds can be obtained through that ratio.

$$\omega = {n_{\exp }}/{n_{EB}}$$

Similarly, the degrading rate can also be described by a series of formulas shown below:

$$v = - \frac{{d{n_{\exp }}}}{{dt}}$$

The Equation for The Growth Rate of Enzyme Proteins

The kinetics of cell growth

According to the characterisitics of microbial cell growth, Monod Equation is the most commonly used one. Although this equation is considered to be simple and effective when used to describe the growth of bacteria, it is only suitable under the condition that there is no other restrictive substances in the environment. In our system, PETase is secreted by the bacteria to the environment and, more limitation by feedback regulation will arise if it is in a mixed bacteria system. Thus we utilize the Logistic Equation to describe the rhythm of the growth rate.

Logisic model is a typical S-shaped curve that can reflect the inhibition effect caused by the increase of bacteria concentration in the fermentation process. In the early stage, the bacteria concentration is low , namel cx is much lower than cxm, therefore the item of cx/cxm can be neglected. The colony is in the stationary phase after the logarithmic phase and at that time cx is close to cxm. The colony ceases to grow. The whole process can be described in the following equation:

\[{r_x} = \frac{{d{c_x}}}{{dt}} = {\mu _m}{c_x}(1 - \frac{{{c_x}}}{{{c_x}_m}})\]

Rx The growth rate of cell growth
Cx The concentration of cells
Cxm The maximum concentration of cells
μ Specific growth rate , namely the growth rate of a unit thalli concentration
μm The maximum specific growth rate

The definition of μ is :

$$\mu = \frac{{{r_x}}}{{{c_x}}}$$

When cells are in exponential phase, μ is generally a constant,so

$$\mu = \frac{1}{t}\ln \frac{{{c_x}}}{{{c_{x0}}}}$$

Under the condition when t=0, cx=cx0, we integrate the formula above:

\[{c_x} = \frac{{{c_x}_0{c_x}_m{e^{{\mu _m}t}}}}{{{c_x}_m - {c_x}_0(1 - {e^{{\mu _m}t}})}}\]

Solve this equation and the growth curve can be obtained:

The formation dynamics of expression product (PETase)

The extreme diversity of metabolites produced by microbial fermentation and the complexity of biosynthesis routes in the cells cause the biosynthetic pathways and metabolic regulation mechanism of those metabolites to show diverse characterisitics. We use the relations between cell growth rate and the production rate to describe the rate of protein production. The universal model can be expressed by Leudeking-Piret Equation:

\[{r_E} = \frac{{dE}}{{dt}} = \alpha \frac{{d{c_x}}}{{dt}} + \beta {c_x}\]

α A product synthesis constant associated with bacteria growth(g•g-1)
β A product synthesis constant irrelevant with bacteria growth(g•g-1•h-1)

When α≠0 and β=0, the model is growth coupling. When α=0 and β≠0, the model is non-growth coupling. When α≠0 and β≠0, the model is partial-growth coupling.

Plug the cell growth rate into the equation to simplify:

\[{r_E} = \frac{{dE}}{{dt}} = {c_x} \cdot \left[ {\alpha {\mu _m}(1 - \frac{{{c_x}}}{{{c_{xm}}}}) + \beta } \right]\]

Integrate the equation above.

\[E = \alpha (\frac{{{c_{x0}}{c_m}{e^{{\mu _m}t}}}}{{{c_m} - {c_{x0}} + {c_{x0}}{e^{{\mu _m}t}}}} - {c_{x0}}) + \frac{{\beta {c_{xm}}}}{{{\mu _{xm}}}}\ln \frac{{{c_{xm}} - {c_{x0}} + {c_{x0}}{e^{{\mu _m}t}}}}{{{c_{xm}}}}\]

Solve this equation and the production curve of PETase can be obtained:


Compared with the growth curve of bacteria, we can see intuitively that at the beginning, the correlation between the enzymes production and the concentration of bacteria is high. And with the time passing by the correlation becomes lower and finally disappears.


The Transfer Process of Enzymes in The Liquid Phase

The secretion of enzymes from cells will inevitably lead to the increase of enzyme concentration nearby. And when enzyme concentrations surrounding the cells are larger than that in the liquid phase body, a driving force will emerge, causing the diffusion of enzymes into liquid phase body. On the other hand, the enzymes in the liquid phase will reach the surface of PET along with the free diffusion of molecules. So there are two transfer processes before the enzymes adsorp on the PET surface.

The mass transfer process of enzymes in the liquid phase body

Cells secrete enzymes to the outside. Here a cell can be regarded as a sphere and there’s a spherical shell composed by the enzymes in the outer surface of the sphere. Inside this shell an unsteady mass transfer process will occur along the radius direction.

Do differential enzyme E mass balance in a sphere with radius r and thickness dr. The rate of mass imported from the inner surface:

$${r_{imp}}{\rm{ = }}{j_{{\rm{er}}}} \cdot 4\pi {r^2}$$

rimp Rate of imported mass

The rate of mass output from the outside surface is:

$${r_{\exp }}{\rm{ = }}{j_{{\rm{er}}}} \cdot 4\pi {r^2}{\rm{ + }}\frac{{\partial ({j_{{\rm{er}}}} \cdot 4\pi {r^2})}}{{\partial r}}dr$$

rexp Rate of exported mass

The rate of mass accumulation in the sphere:

$${r_{acc}}{\rm{ = }}\frac{{\partial E}}{{\partial t}} \cdot 4\pi {r^2}dr$$ $${r_{pro}}{\rm{ = }}{r_E} = \frac{{dE}}{{dt}}$$

racc Rate of accumulation
rpro Rate of production

Based on the conservation of mass, we can get:

Rate of exported mass – rate of imported mass + rate of accumulation – producing rate = 0

Substitute those rate of mass into this equation:

$$\frac{{\partial ({j_{er}}{r^2})}}{{\partial r}} + \frac{{\partial E}}{{\partial t}}{r^2} - {R_E} = 0$$

Based on Fick’s first law,

$${j_{er}} = - D\frac{{\partial E}}{{\partial r}}$$

Substitute and sort this equation. Finally, we can get the unstable diffusion differential equation while the enzymes near the cells are secreted along direction r.

$$\frac{{\partial E}}{{\partial t}} = D\frac{1}{{{r^2}}}\frac{\partial }{{\partial r}}({r^2}\frac{{\partial E}}{{\partial r}}) + {r_E}$$

Integrate the equation above then we can get the distribution equation of the enzyme concentration.

If we use the diffusion rate equation, the rate of enzyme diffusion from cells to liquid phase body can be described as:

\[\frac{{d{E_x}}}{{dt}} = {k_c}{a_c}({E_c} - {E_x})\]

Ex The concentration of enzyme in liquid phase body
Ec The concentration of enzyme on cell surface
kc Mass transfer coefficient in liquid phase
ac The surface area of cells

Mass transfer process of enzymes from liquid phase to the surface of PET

Similar to the process of diffusion from cells to liquid body, based on Fick’s first law and mass conservation we can get the differential equation of the diffusion process.

$$\frac{{\partial E}}{{\partial t}} = D(\frac{{{\partial ^2}E}}{{\partial {x^2}}} + \frac{{{\partial ^2}E}}{{\partial {y^2}}} + \frac{{{\partial ^2}E}}{{\partial {z^2}}}) + {r_E}$$

If we integrate the formula above, we can get the distributing equation of the enzyme concentration.

Similarly with the diffusion rate equation, the equation of the rate of enzyme diffusion from liquid to PET surface can be obtained:

$$\frac{{d{E_p}}}{{dt}} = {k_p}{a_p}({E_x} - {E_p})$$

Ex The enzyme concentration in liquid phase
Ep The enzyme concentration on the cells’surface
kp Mass transfer coefficient in liquid phase
ap The surface area of cells

Total diffusion rate equation in liquid phase

The total diffusion equation of the process can be described as:

$$\frac{{dE}}{{dt}} = Ka({E_c} - {E_p} - \Delta E)$$

K the total mass transfer coefficient
a Solid-liquid interface contact area
Ec the enzyme concentration on cells’surface
Ep the enzyme concentration on PET surface
ΔE The loss of driving force of mass transfer caused by the enzyme concentration accumulation in the liquid phase.

Assuming that the diffusion process in liquid phase is a dynamic balancing process, which means the concentration variation in the liquid phase body is equal to the rate of enzyme production, it can be describe as:

$$\frac{{d{E_c}}}{{dt}} - {r_E} = \frac{{d{E_P}}}{{dt}}$$

The expanded form is:

\[\frac{{dE}}{{dt}} = \frac{{({E_c} - {E_x}) - \frac{{{r_E}}}{{{k_c}{a_c}}} + ({E_x} - {E_p})}}{{\frac{1}{{{k_c}{a_c}}} + \frac{1}{{{k_p}{a_p}}}}}\]

So the relationship between the parameters in total mass flux equation and those in interphase mass flux equation is:

$$\frac{1}{{Ka}} = \frac{1}{{{k_c}{a_c}}} + \frac{1}{{{k_p}{a_p}}}$$

\[\Delta E = \frac{{{r_E}}}{{{k_c}{a_c}}}\]

As we can see, the total resistance for enzymes in liquid phase is the resistance from cell surface to liquid phase body plus that from liquid to PET surface. In this system, the adsorption of enzymes on the PET surface will lead to the accumulation of the enzymes. So the concentration gradient drops in the concentration field near the PET surface. As a result, the most of the resistance for enzyme transfer in liquid phase is that from liquid to PET surface, which can be described as:

\[\frac{1}{{Ka}} = \frac{1}{{{k_c}{a_c}}}\;\;\;\;\;K \approx \frac{{{k_c}{a_c}}}{a}\]

Time loss caused by mass transfer in liquid phase

After secreted by cells, enzymes diffuse to the surface of PET through liquid phase.In the process of mass tranfer, enzyme concentration in liquid phase will be balanced with that on the surface of cells and that on the surface of PET.Thus some enzymes will remain in liquid phase body.And the mass transfer process will lead to the delay of enzyme concentration change on the PET surface.This can be expressed by the equation below:

\[\int_t^{t + T} {Ka({E_c} - {E_P} - \Delta E)dt = {E_c} - {E_P}} \]

T Delay time,a function of time

The equation above is an integral equation.Corresponding differential equation is:

\[Ka[\frac{{dT}}{{dt}}\Delta E(t + T) - \Delta E(t)] = \frac{{\Delta E(t)}}{{dt}}\]

Intergrate this equation and we get the relation between delay time T and time:


The process of PETase adsorbing on PET surface and enzymes catalyzing PET degradation

The biodegradation of polymer by enzymes is a kind of heterogeneous enzymatic reactions. Since the classical dynamics equation for enzymatic reaction, Michaelis-Menten equation, is based on homogeneous enzyme- substrate system, it’s not suitable to describe the process of the degradation of polymers. Enzymes will act with polymers through their bonding sites and combine with the substrate after their secretion and diffusion to the PET surface from cells. Both of the molecular configurations change after the adsorption. The enzymatic active center will expose to ‘find’ the corresponding sites on the polymer. At the same time, the polymer must offer the active segment. Then the enzymes catalyze to break the ester bonds, and the small molecules such as MHET will be released and diffuse into the liquid phase. Finally PET will desorb enzymes.

Establishment of dynamics equation for PET enzymatic degradation

Assuming that there is a bonding site and an active center in the enzyme, it combines with the substrate through its bonding site and then degrades the polymer with its active site. In this system the product molecules still contain ester bonds, as a result, MHET may act with the enzymes before its diffusion into the solution and restrain the combination between PET and PETase. This competitive restraint will lead to a declination in the catalysis rate. Those above can be described as:

Compared with other kinds of plastics, PET is more difficult to be degraded for the sake of its distinct structure. Aliphatic polymers are biodegradable for its good elasticity while aromatic polymer is rigid with benzene. Through the above description of the process, the enzyme need to find an active segment to combine with. So it supposes the polymer to get flexibility to increase the possibility to react with PETase. However, the rigidity of PET leads to reducing of the activity of PETase. So this step is the restrict step of the whole enzymatic process. Based on the stationary approximate theory, we can get the total dynamics equation.

Dynamics equation of enzyme absorption

The fraction of coverage can be described as:

\[\theta = \frac{A}{{{A_0}}} = \frac{{{q_E}}}{{{q_{{E_{\max }}}}}}\]

θ The fraction of coverage by enzyme on the polymer surface
A0 The total mass transfer coefficient
A Area already covered
qE The content of absorption for enzyme per area on polymer
qEmax The maximum absorption amount

Because enzymatic catalytic step is a rete controlling step, the absorption on polymer surface is a dynamic balancing process.

Rate of absorption:\[{r_1} = d[ES]/dt = {k_1}[E](1 - \theta )\;\]

Rate of desorption:\[{r_2} = d[E]/dt = {k_{ - 1}}\theta \]

From r1=r-1, we can get: k1[E] (1-θ) = k-1θ. Combining with the fraction of coverage we can get:

\[\theta = \frac{{{q_E}}}{{{q_{{E_{\max }}}}}} = \frac{{{K_A}[E]}}{{1 + {K_A}[E]}}\]

[E] The concentration of enzyme]
KA Absorption balancing constant

The above equation is Langmuir equation

Establishment of equation for rate of total degradation of PET

After absorption to the surface, the combination and escape is a dynastic balancing process because of the competitive substrate.

\[{k_3}[ES][P] = {k_{ - 3}}[ESP]\]

[ES] The concentration of enzyme absorbed
[P] The concentration of MHET
[ESP] The concentration of enzyme combined with MHET

\[[ESP] = {K_B}[ES][P]\]

KB Constant of substrate restraint balance

The enzymatic degradation is interfacial reaction before degradation in large scale. So the rate of degradation of polymer, the absorbed enzyme amount, the inactive combined enzyme mount, the density of ester bond on polymer surface and the superficial area have the following relation:

\[v = - \frac{{d{n_{\exp }}}}{{dt}} = A \cdot {k_2} \cdot {\rho _{EB}}({q_E}A - {n_E})\]

v The rate of degradation[mol/min]
t Time[min]
k2 Constant of degradation rate [cm3/(min•mg)]
A Superficial of polymer[cm2]
nE The inactive combined enzyme mount[mol]

Connecting with the absorption balance and the substrate restrain balance, we can get the total rate of degradation equation:

\[v = {k_2}{\rho _{EB}}(\frac{{{K_A}[E]{q_{{E_{\max }}}}A}}{{1 + {K_A}[E]}} - {K_A}{K_B}{[E]^2}[P] \cdot V)\]

V The volume of the system

With mass conservation, we can get:

\[{E_p} = E + ES + ESP\] \[[E] = \frac{{[{E_P}]}}{{1 + {K_A} + {K_A}{K_B}[P]}}\]

[Ep] The concentration of enzymes on the plastic surface

Because the concentration of enzyme is low in the system and the producing rate of MHET is equal to the rate of PET degradation, we can get the following formula:

\[\theta = {K_A}[E]\] \[\, - \frac{{d{n_{\exp }}}}{{dt}} = \frac{{Vd[P]}}{{dt}}\]

Considering that MHET in substrate restrain is easy to diffuse to liquid, which means the balance is small, we can get the final equation for plastic degradation:

\[v = \frac{{d[P]}}{{dt}} = \frac{{{k_2}{\rho _{EB}}}}{V}(\frac{{{K_A}[EP]{q_{{E_{\max }}}}A}}{{1 + {K_A} + {K_A}{K_B}[P]}} - \frac{{{K_A}{K_B}{{[{E_P}]}^2}[P]}}{{{{(1 + {K_A})}^2}}})\]

The above equation is differential whose only variable is the concentrate of MHET. So we can transform the equation as the following form:

\[\frac{{d[P]}}{{dt}} = \frac{a}{{[P]}} - b[P]\]

Both a and b here are constants.

The concentration of MHET is 0 initially. Solve the above differential equation, we can get the curves of the rate of PET degradation as following:

From the above figure, enzymes get to the absorption balance and get the biggest rate of degradation. But the rate get down gradually with substrate restrain.


Solution of PET Degradation Rate Considering The Whole System

Solution of PET degradation rate considering the process of cells secrete protein

We have got the rate of enzyme production by connecting with the growth process of cells before. Substitute it into the total equation of PET degradation rate then we can get the rate of PET degradation with cells. Marge constants:

\[v = \frac{{c[{E_P}]}}{{d + e[P]}} - f{[{E_P}]^2}[P]\] \[v = g[{E_P}] - h{[{E_P}]^2}\]

c,d,e,f,g,h here are constants.

From the above figure, the rate of degradation without competitive restrain is pretty lower than it with competitive restrain. When there is competitive restrain, the change of degradation rate can be divided into three stages. First, the absorption controlling stage at which the absorption amount of enzyme increases with its secretion. Second, the secretion controlling stage at which the secretion rate gets to saturation because of the saturation of cell growth. Finally, PET degradation rate settle out because of both the two factor, mostly because the absorption gets its saturation.

Rate of the whole process for cells to secrete and degrade in heterogeneous phase

We just calculated the enzymatic degradation rate while ignored the transmission in the liquid. The transmission will lead to loss of the effective enzyme and latency of arrival for enzyme to PET surface. Connecting these two factor with the above total equation and substitute constants we can get:

\[v = \frac{{c[EP](t - T)}}{{d + e[P](t)}} - f{([EP](t - T))^2}[P](t)\]

[Ep](t-T) The concentration on PET surface is a function of time t-T
[P](t) The concentration of MHET is a function of time t]

Solve the above equation, then we get the curves of PET degradation rate in heterogeneous phase.

From the figure above , the change of degradation rate can be divided into three stages no matter if there is liquid transmission. And the liquid transmission effect the second stage most, at which cells grow up and secret more. The liquid transmission effect less on absorption controlling stage and saturation stage. That can be reasonable because absorption is just related to the concentration of enzyme on the PET surface. And enzymes secreted by cells can only get to plastic surface through liquid transmission in secretion controlling stage.


Conclusion and Prospect

We begin to build our models above from the process analysis of PET degradation in heterogeneous system. We construct models for each step and finally deduce the rate curve of PET degradation by the enzymes secreted by bacteria in heterogeneous system.From this curve we can see that the degradation can be devided into 3 parts.In the first part, degradation rate is under the control of bacteria growth and enzyme secretion.In the second part, it is controlled by the mass transfer of enzyme in the liquid phase.In the third part, it is controlled by the catalytic ability of enzymes adsorbed on the PET surface .From the trend of the curve we can conclude that, in order to degrade PET with a higher rate or make the rate peak as soon as possible,what we first need to do is to promote the growth of bacteria.This will enhance the enzyme concentration.On the other hand, we can accelerate the diffusion of enzymes in the liquid phase.For example,shake cultivation or stirred culture,can eliminate the influence of time delay and make the degradation rate reach the peak fast.Our system assumes that PET degradation only takes place on the surface of PET.Although it's reasonable,as the degradation proceeds, small gaps will form on the plastics due to degradation.If they become so large that enzymes can diffuse into the interior of PET,degradation process will be accelerated to a huge extent.The next step of building models is to take the process and threshold value of internal diffusion into consideration.This will provide a more accurate model to describe the process of PET degradation in the heterogeneous system.


Refenerce

[1] Ma Mengmeng. Studies on Enzymatic Degradation of Polymer Nanoparticles and Adsorption Mechanism of Enzymes on Nanoparticles [D]. Tianjin: School of Chemical Engineering and Technology,Tianjin University,2004

[2] Liu Bin. High-density Fermentation of Genetically Engineered Pichia pastoris Expressing Recombinant Human-source Collagen [D]. Nanjing: Nanjing University of Science & Technology,2012

[3] Chen Li, Wang Yue, Guo Meijin,et al.Kinetic modelling of porcine insulin precursor (PIP) expressed by multi-copy recombinant Pichia pastoris [J]. CIESC Journal, 2016, 67(5):2015-2021

[4] Chen Tao, Zhang Guoliang. Chemical transfer process foundation[M]. Beijing: Chemical Industry Press,2009

[5] Jia Shaoyi, Chai Chengjing. Chemical mass transfer and separation process[M].Beijing: Chemical Industry Press,2007

[6] Tan Tianwei. Biochemical Engineering[M].Beijing: Chemical Industry Press,2008

[7] Li Songlin, Zhou Yaping, Liu Junji.Physical chemistry[M]. Higher Education Press, 2009

[8] Li Shaofen.Chemical Reaction Engineering[M]. Beijing: Chemical Industry Press,2012



Team Tianjin Sponsor Alltech
Team Tianjin Sponsor GenScript
Team Tianjin Sponsor SynbioTech