Difference between revisions of "Team:BostonU/HomeOne"

Line 119: Line 119:
 
<p style = "font-size:260%; color:#0071A7; text-align:center;">Phase 1 Results</p>
 
<p style = "font-size:260%; color:#0071A7; text-align:center;">Phase 1 Results</p>
 
<center><hr style= "width:550px; height: 4px; background-color:#0071A7"></center><br>
 
<center><hr style= "width:550px; height: 4px; background-color:#0071A7"></center><br>
<p style = "text-indent:70px; font-size:150%; padding:25px 150px 50px 150px; color:#0071A7;">The goal of phase 1 to establish a consistent method of gene activation through dCAS9-VPR. Using MIT's CRISPR  optimization tool, we generated 20 sequences to be used as our gRNA and target site. The dCAS9-VPR complex, the target sequence and reporter gene, and the gRNA expression vectors were constructed and transfected into HEK293 cells. Another set of transfections took place simultaneously with the same materials minus the gRNA expression vector as a negative control. The fold increase between the basal level of expression from the control and the activated level of expression was then recorded. The results can be found below.</p>
+
<p style = "text-indent:70px; font-size:150%; padding:25px 150px 50px 150px; color:#0071A7;">The goal of phase 1 to establish a consistent method of gene activation through dCAS9-VPR and well characterize the components of our system. Using MIT's CRISPR  optimization tool, we generated 20 sequences to be used as our gRNA and target site. The dCAS9-VPR complex, the target sequence and reporter gene, and the gRNA expression vectors were constructed and transfected into HEK293 cells. Another set of transfections took place simultaneously with the same materials minus the gRNA expression vector as a negative control. The fold increase between the basal level of expression from the control and the activated level of expression was then recorded. The results can be found below.</p>
  
 
<center><img src = "https://static.igem.org/mediawiki/2016/a/aa/T--BostonU--InitialData.jpg" style = "width:80%"></center>
 
<center><img src = "https://static.igem.org/mediawiki/2016/a/aa/T--BostonU--InitialData.jpg" style = "width:80%"></center>
Line 139: Line 139:
 
<div id="hover-contenttwo">
 
<div id="hover-contenttwo">
 
<br>
 
<br>
<p style = "font-size:260%; color:#0071A7; text-align:center;">Phase 1 Results</p>
+
<p style = "font-size:260%; color:#0071A7; text-align:center;">Phase 2 Results</p>
 
<center><hr style= "width:550px; height: 4px; background-color:#0071A7"></center><br>
 
<center><hr style= "width:550px; height: 4px; background-color:#0071A7"></center><br>
<p style = "text-indent:70px; font-size:150%; padding:25px 150px 50px 150px; color:#0071A7;">The goal of phase 1 to establish a consistent method of gene activation through dCAS9-VPR. Using MIT's CRISPR  optimization tool, we generated 20 sequences to be used as our gRNA and target site. The dCAS9-VPR complex, the target sequence and reporter gene, and the gRNA expression vectors were constructed and transfected into HEK293 cells. Another set of transfections took place simultaneously with the same materials minus the gRNA expression vector as a negative control. The fold increase between the basal level of expression from the control and the activated level of expression was then recorded. The results can be found below.</p>
+
<p style = "text-indent:70px; font-size:150%; padding:25px 150px 50px 150px; color:#0071A7;">With our parts of our project well characterized, we began experimenting with achieving a variety of consistent expression levels with our dCAS9-VPR activator. Our first strategy was to attempt multimerizing the target operators, placing two and then three operators up stream of the gene of interest using two of our operators. During this experiment, we also tested the effect of spacing the target operators with a different number of intervening base pairs. We tested with 0, 3, 6, 12, and 24 intervening base pairs. The results of these experiments yielded a predictable, linear correlation between the number of operators and the expression level and the number of base pairs in the intervening sequences. The results can be found below: </p>
  
<center><img src = "https://static.igem.org/mediawiki/2016/a/aa/T--BostonU--InitialData.jpg" style = "width:80%"></center>
+
<center><img src = "https://static.igem.org/mediawiki/2016/2/27/T--BostonU--multi.png" style = "width:80%"></center>
  
  

Revision as of 02:03, 10 September 2016


Project Design
<

Phase 1

Phase 2

Phase 3


Phase 1 Results



The goal of phase 1 to establish a consistent method of gene activation through dCAS9-VPR and well characterize the components of our system. Using MIT's CRISPR optimization tool, we generated 20 sequences to be used as our gRNA and target site. The dCAS9-VPR complex, the target sequence and reporter gene, and the gRNA expression vectors were constructed and transfected into HEK293 cells. Another set of transfections took place simultaneously with the same materials minus the gRNA expression vector as a negative control. The fold increase between the basal level of expression from the control and the activated level of expression was then recorded. The results can be found below.


The goal of phase 1 to establish a consistent method of gene activation through dCAS9-VPR. Using MIT's CRISPR optimization tool, we generated 20 sequences to be used as our gRNA and target site. The dCAS9-VPR complex, the target sequence and reporter gene, and the gRNA expression vectors were constructed and transfected into HEK293 cells. Another set of transfections took place simultaneously with the same materials minus the gRNA expression vector as a negative control. The fold increase between the basal level of expression from the control and the activated level of expression was then recorded. The results can be found below. Here are some extra words to make it seem like this is a different paragraph than the rest when really, it's not. It's just the same thing. But I want to make it look different, so there you go. Let's just add a few more words, and there we go. That should do it.


The goal of phase 1 to establish a consistent method of gene activation through dCAS9-VPR. Using MIT's CRISPR optimization tool, we generated 20 sequences to be used as our gRNA and target site. The dCAS9-VPR complex, the target sequence and reporter gene, and the gRNA expression vectors were constructed and transfected into HEK293 cells. Another set of transfections took place simultaneously with the same materials minus the gRNA expression vector as a negative control. The fold increase between the basal level of expression from the control and the activated level of expression was then recorded. The results can be found below.


Phase 2 Results



With our parts of our project well characterized, we began experimenting with achieving a variety of consistent expression levels with our dCAS9-VPR activator. Our first strategy was to attempt multimerizing the target operators, placing two and then three operators up stream of the gene of interest using two of our operators. During this experiment, we also tested the effect of spacing the target operators with a different number of intervening base pairs. We tested with 0, 3, 6, 12, and 24 intervening base pairs. The results of these experiments yielded a predictable, linear correlation between the number of operators and the expression level and the number of base pairs in the intervening sequences. The results can be found below:


The goal of phase 1 to establish a consistent method of gene activation through dCAS9-VPR. Using MIT's CRISPR optimization tool, we generated 20 sequences to be used as our gRNA and target site. The dCAS9-VPR complex, the target sequence and reporter gene, and the gRNA expression vectors were constructed and transfected into HEK293 cells. Another set of transfections took place simultaneously with the same materials minus the gRNA expression vector as a negative control. The fold increase between the basal level of expression from the control and the activated level of expression was then recorded. The results can be found below. Here are some extra words to make it seem like this is a different paragraph than the rest when really, it's not. It's just the same thing. But I want to make it look different, so there you go. Let's just add a few more words, and there we go. That should do it.


The goal of phase 1 to establish a consistent method of gene activation through dCAS9-VPR. Using MIT's CRISPR optimization tool, we generated 20 sequences to be used as our gRNA and target site. The dCAS9-VPR complex, the target sequence and reporter gene, and the gRNA expression vectors were constructed and transfected into HEK293 cells. Another set of transfections took place simultaneously with the same materials minus the gRNA expression vector as a negative control. The fold increase between the basal level of expression from the control and the activated level of expression was then recorded. The results can be found below.


Phase 1 Results



The goal of phase 1 to establish a consistent method of gene activation through dCAS9-VPR. Using MIT's CRISPR optimization tool, we generated 20 sequences to be used as our gRNA and target site. The dCAS9-VPR complex, the target sequence and reporter gene, and the gRNA expression vectors were constructed and transfected into HEK293 cells. Another set of transfections took place simultaneously with the same materials minus the gRNA expression vector as a negative control. The fold increase between the basal level of expression from the control and the activated level of expression was then recorded. The results can be found below.


The goal of phase 1 to establish a consistent method of gene activation through dCAS9-VPR. Using MIT's CRISPR optimization tool, we generated 20 sequences to be used as our gRNA and target site. The dCAS9-VPR complex, the target sequence and reporter gene, and the gRNA expression vectors were constructed and transfected into HEK293 cells. Another set of transfections took place simultaneously with the same materials minus the gRNA expression vector as a negative control. The fold increase between the basal level of expression from the control and the activated level of expression was then recorded. The results can be found below. Here are some extra words to make it seem like this is a different paragraph than the rest when really, it's not. It's just the same thing. But I want to make it look different, so there you go. Let's just add a few more words, and there we go. That should do it.


The goal of phase 1 to establish a consistent method of gene activation through dCAS9-VPR. Using MIT's CRISPR optimization tool, we generated 20 sequences to be used as our gRNA and target site. The dCAS9-VPR complex, the target sequence and reporter gene, and the gRNA expression vectors were constructed and transfected into HEK293 cells. Another set of transfections took place simultaneously with the same materials minus the gRNA expression vector as a negative control. The fold increase between the basal level of expression from the control and the activated level of expression was then recorded. The results can be found below.