Difference between revisions of "Team:BostonU/Part Collection"

Line 10: Line 10:
  
  
<br><p>The BostonU 2016 iGEM team created Gemini, a design space that combines digital and analog expression systems to easily modulate exogenous gene expression levels in human cells. The system relies on three components: a genome-orthogonal gRNA recognizes a corresponding DNA operator sequence upstream of a minimal promoter, and it recruits dCas9-VPR to transactivate the output gene. We developed a set of mutually-orthogonal gRNAs to enable multiplexed gene regulation without cross-talk, and a set of gRNA-operator plasmids to achieve varied expression levels. Our submitted parts collection has 2 gRNA expression devices (BBa_K1875011-BBa_K1875012) and 7 gRNA-operator devices (BBa_K1875013-BBa_K1875019). We validated these parts using flow cytometry. We demonstrated “digital” expression when comparing output gene activation with or without gRNAs, and “analog” expression when comparing different gRNA-operator architectures (single, multimerized, and mutated sequences). </p>
+
<br><p style = "font-size:150%; padding:25px 150px 20px 150px; color:#0071A7;">The BostonU 2016 iGEM team created Gemini, a design space that combines digital and analog expression systems to easily modulate exogenous gene expression levels in human cells. The system relies on three components: a genome-orthogonal gRNA recognizes a corresponding DNA operator sequence upstream of a minimal promoter, and it recruits dCas9-VPR to transactivate the output gene. We developed a set of mutually-orthogonal gRNAs to enable multiplexed gene regulation without cross-talk, and a set of gRNA-operator plasmids to achieve varied expression levels. Our submitted parts collection has 2 gRNA expression devices (BBa_K1875011-BBa_K1875012) and 7 gRNA-operator devices (BBa_K1875013-BBa_K1875019). We validated these parts using flow cytometry. We demonstrated “digital” expression when comparing output gene activation with or without gRNAs, and “analog” expression when comparing different gRNA-operator architectures (single, multimerized, and mutated sequences). </p>
  
  
  
<br><p>
+
<br><p style = "font-size:150%; padding:25px 150px 20px 150px; color:#0071A7;">
 
The team created pages for parts BBa_K1875000 - BBa_K1875019 and submitted parts BBa_K1875011 - BBa_K1875019.</p>
 
The team created pages for parts BBa_K1875000 - BBa_K1875019 and submitted parts BBa_K1875011 - BBa_K1875019.</p>
  

Revision as of 16:09, 14 October 2016


The BostonU 2016 iGEM team created Gemini, a design space that combines digital and analog expression systems to easily modulate exogenous gene expression levels in human cells. The system relies on three components: a genome-orthogonal gRNA recognizes a corresponding DNA operator sequence upstream of a minimal promoter, and it recruits dCas9-VPR to transactivate the output gene. We developed a set of mutually-orthogonal gRNAs to enable multiplexed gene regulation without cross-talk, and a set of gRNA-operator plasmids to achieve varied expression levels. Our submitted parts collection has 2 gRNA expression devices (BBa_K1875011-BBa_K1875012) and 7 gRNA-operator devices (BBa_K1875013-BBa_K1875019). We validated these parts using flow cytometry. We demonstrated “digital” expression when comparing output gene activation with or without gRNAs, and “analog” expression when comparing different gRNA-operator architectures (single, multimerized, and mutated sequences).


The team created pages for parts BBa_K1875000 - BBa_K1875019 and submitted parts BBa_K1875011 - BBa_K1875019.