Difference between revisions of "Team:BostonU"

Line 74: Line 74:
 
analog expression levels of a gene.
 
analog expression levels of a gene.
 
</p>
 
</p>
 +
 +
<br><br><center><hr style= "width:702px; height: 3px; background-color:white"></center><br><br><br><br>
 +
 +
<p style = "font-size:150%; text-align:center;">For a more detailed explanation of our project and its design, please click below:</p>
 
<br>
 
<br>
<br>
+
<center><div style = "height:50px; width:200px; background-color:white;">
 +
<a href="https://2016.igem.org/Team:BostonU/Description" style = "text-align:center; font-size:300%; color:#0071A7;">>></a>
 +
</div></center>
 +
<br><br><br><br>
 
</div>
 
</div>
  

Revision as of 17:49, 28 July 2016





BostonU iGEM



2016



























Our Project



Synthetic biologists seek to control the behaviors, specifically those behaviors dictated by gene expression. To do this, they look to cells to provide a blueprint for their designs. However, scientists like Timothy Lu have noticed a distinct dichotomy in the field of synthetic biology surrounding cellular blue prints,


“Living cells implement ... both analogue- and digital-like processing ... In contrast to natural biological systems, synthetic biological systems have largely focused on either digital or analogue computation separately.”


Currently in the field, most methods of gene regulation are either digital (transcriptional activators, repressors, and inducible circuits) or they are analog (oscillatory circuits). This summer our team desires to develop a synthetic promoter toolkit that can translate different combinations of digital input signals into analog expression levels of a gene.








For a more detailed explanation of our project and its design, please click below:


>>









Follow us on: