Difference between revisions of "Team:BostonU/Part Collection"

Line 14: Line 14:
 
<br>
 
<br>
 
<p style = "font-size:150%; padding:5px 150px 15px 150px; color:#0071A7;">
 
<p style = "font-size:150%; padding:5px 150px 15px 150px; color:#0071A7;">
The BostonU 2016 iGEM team created Gemini, a design space that combines digital and analog expression systems to easily modulate exogenous gene expression levels in human cells. The system relies on three components: a genome-orthogonal gRNA recognizes a corresponding DNA operator sequence upstream of a minimal promoter, and it recruits dCas9-VPR to transactivate the output gene. We developed a set of mutually-orthogonal gRNAs to enable multiplexed gene regulation without cross-talk, and a set of gRNA-operator plasmids to achieve varied expression levels. Our submitted parts collection has 2 gRNA expression devices (<a href = "http://parts.igem.org/Part:BBa_K1875011" style = "color:blue;">BBa_K1875011</a>-<a href = "http://parts.igem.org/Part:BBa_K1875012" style = "color:blue;">BBa_K1875012</a>) and 7 gRNA-operator devices (<a href = "http://parts.igem.org/Part:BBa_K1875013" style = "color:blue;">BBa_K1875013</a>-<a href = "http://parts.igem.org/Part:BBa_K1875019" style = "color:blue;">BBa_K1875019</a>). We validated these parts using flow cytometry. We demonstrated “digital” expression when comparing output gene activation with or without gRNAs, and “analog” expression when comparing different gRNA-operator architectures (single, multimerized, and mutated sequences). </p>
+
The BostonU 2016 iGEM team created Gemini, a design space that combines digital and analog expression systems to easily modulate exogenous gene expression levels in human cells. The system relies on three components: a genome-orthogonal gRNA, a corresponding DNA operator with a minimal promoter, and a dCas9-VPR to transactivate the output gene. We developed a set of mutually-orthogonal gRNAs to enable multiplexed gene regulation without cross-talk, and a set of gRNA-operator plasmids to achieve varied expression levels. Our submitted parts collection has 2 gRNA expression devices (<a href = "http://parts.igem.org/Part:BBa_K1875011" style = "color:blue;">BBa_K1875011</a>-<a href = "http://parts.igem.org/Part:BBa_K1875012" style = "color:blue;">BBa_K1875012</a>) and 7 gRNA-operator devices (<a href = "http://parts.igem.org/Part:BBa_K1875013" style = "color:blue;">BBa_K1875013</a>-<a href = "http://parts.igem.org/Part:BBa_K1875019" style = "color:blue;">BBa_K1875019</a>). We validated these parts using flow cytometry. We demonstrated “digital” expression when comparing output gene activation with or without gRNAs, and “analog” expression when comparing different gRNA-operator architectures (single, multimerized, and mutated sequences). </p>
  
 
<p style = "font-size:150%; padding:5px 150px 15px 150px; color:#0071A7;">
 
<p style = "font-size:150%; padding:5px 150px 15px 150px; color:#0071A7;">

Revision as of 22:16, 19 October 2016

Best Part Collection




The BostonU 2016 iGEM team created Gemini, a design space that combines digital and analog expression systems to easily modulate exogenous gene expression levels in human cells. The system relies on three components: a genome-orthogonal gRNA, a corresponding DNA operator with a minimal promoter, and a dCas9-VPR to transactivate the output gene. We developed a set of mutually-orthogonal gRNAs to enable multiplexed gene regulation without cross-talk, and a set of gRNA-operator plasmids to achieve varied expression levels. Our submitted parts collection has 2 gRNA expression devices (BBa_K1875011-BBa_K1875012) and 7 gRNA-operator devices (BBa_K1875013-BBa_K1875019). We validated these parts using flow cytometry. We demonstrated “digital” expression when comparing output gene activation with or without gRNAs, and “analog” expression when comparing different gRNA-operator architectures (single, multimerized, and mutated sequences).

The team created pages for parts BBa_K1875000 - BBa_K1875019 and submitted parts BBa_K1875011 - BBa_K1875019.