Human Practices: Gold Medal Qualification
Here we expand upon our Human Practices to integrate advice from experts into the design, experimentation, and execution of our project.
Commodo id natoque malesuada sollicitudin elit suscipit. Curae suspendisse mauris posuere accumsan massa posuere lacus convallis tellus interdum. Amet nullam fringilla nibh nulla convallis ut venenatis purus lobortis. Auctor etiam porttitor phasellus tempus cubilia ultrices tempor sagittis. Nisl fermentum consequat integer interdum integer purus sapien. Nibh eleifend nulla nascetur pharetra commodo mi augue interdum tellus. Ornare cursus augue feugiat sodales velit lorem. Semper elementum ullamcorper lacinia natoque aenean scelerisque vel lacinia mollis quam sodales congue.
Taking Advice from Professor Derek Lovley
While talking to Professor Derek Lovley, we learned it was important for our cell to be anaerobic; if the cell was in contact with atmospheric air, the bacteria could transfer electrons to available oxygen molecules instead of our electrode, thereby preventing the cell from producing a current. Since we were having difficulties making our 3-D printed fuel cell airtight, we began to seriously consider reviewing our strategy and ordering a commercially available fuel cell instead of producing one ourselves. By talking to Professor Lovley, we were able to integrate his advice into our experimental design for our MFC and find a fuel cell that is airtight.
We also asked Professor Lovley whether he had any recommendations for a bacteria species capable of degrading terephthalic acid. Although the professor did not have any specific recommendations, he had previously isolated an extremophile species of bacteria capable of surviving at low temperatures from marine sediment. This encouraged us to try thinking of locations where we could find bacteria capable of metabolizing terephthalic acid. After doing some research, we discovered that terephthalic acid was among the contaminants present in wastewater. Knowing that our PET bacteria, I. Sakaiensis originated at a recycling plant, we thought to contact labs that have discovered bacteria in wastewater treatment facilities. After hearing back from some labs we were able to obtain multiple species of acid-degrading bacteria for experiments.
Taking Advice from Professor Peter Girguis
Professor Peter Girguis' lab specializes in studying deep-sea organisms and has experience developing underwater fuel cells to function as power sources. When we told Girguis about our plan to use terephthalic acid to generate electricity, he immediately warned us that fuel cells are only capable of producing limited amounts of electricity and that we should take this to account when determining the precise application of our reactor. We had up to this point wanted to use the electricity generated by our MFC to power a propeller system on the device. However, our conversation with Girguis helped us grasp the impracticality of producing that much energy. What we found out we could do, though, was power an LED signal or a GPS ping, which we integrated into our final design of Plastiback. Thus, the energy produced by our MFC will help send a signal back to researchers to indicate the location of the Plastiback device.