Difference between revisions of "Team:ZJU-China/Demonstrate"

Line 10: Line 10:
 
     <!-- Bootstrap -->
 
     <!-- Bootstrap -->
 
     <style type="text/css">
 
     <style type="text/css">
@font-face{
 
    font-family: 'fsb';
 
    src:  url('https://static.igem.org/mediawiki/2016/3/3f/Fsb.otf');
 
    }
 
@font-face{
 
    font-family: 'gga';
 
    src:  url('https://static.igem.org/mediawiki/2016/9/94/Gga.otf') format('truetype');
 
    }
 
        @font-face{
 
    font-family: 'spr';
 
    src:  url('https://static.igem.org/mediawiki/2016/b/b7/SansPro-Regular.otf');
 
    }
 
 
 
 
body {
 
body {
 
background-color: #fffae6;
 
background-color: #fffae6;
 
color: #022634;
 
color: #022634;
 
width:100%;
 
width:100%;
padding-top:80px;
 
 
padding-bottom:20px;
 
padding-bottom:20px;
 
}
 
}
Line 56: Line 41:
 
   .dcpt2{
 
   .dcpt2{
 
  text-align: center;
 
  text-align: center;
  margin: 0px;
+
  margin: -20px;
 
  font-size: 36px;
 
  font-size: 36px;
 
  background-color: #d2d2d2;
 
  background-color: #d2d2d2;
 
  font-family:fsb;
 
  font-family:fsb;
 +
          padding: 40px 200px;
 
   }
 
   }
 
   .dcpt3{
 
   .dcpt3{
 
  text-align: justify;
 
  text-align: justify;
  margin:0px 7.5% 100px;
+
  margin:-20px;
  background-color: #e5e5e5;
+
  background-color: #e6e6e6;
  padding: 40px 70px;
+
          padding: 40px 200px;
          width:85%;
+
  }
            
+
  .dcpt4{
 +
  text-align: justify;
 +
  margin:-20px;
 +
  background-color: #fffae6;
 +
           padding: 40px 200px;
 
   }
 
   }
 
   .content3{
 
   .content3{
Line 84: Line 74:
 
   .content4{
 
   .content4{
 
  margin:0px auto;
 
  margin:0px auto;
  font-family: gga;
+
  font-family: gga;  
 
+
 
  font-size:36px;
 
  font-size:36px;
 
  line-height:150%;
 
  line-height:150%;
Line 116: Line 105:
 
}
 
}
 
.dcpt3{
 
.dcpt3{
margin: auto 5%;
+
margin: auto 20%;
padding: auto 5%;
+
padding: auto 20%;
 +
}
 +
        .dcpt4{
 +
margin: auto 20%;
 +
padding: auto 20%;  
 
}
 
}
 
}
 
}
Line 143: Line 136:
  
 
<body>
 
<body>
<div class="container" style="margin-top:100px">
+
  <img src="https://static.igem.org/mediawiki/2016/b/b6/ZJUdemonstrate.jpg" width="100%">
  <div class="row">
+
 
     <div class="col-md-4">
+
<div class="container">
      <div id="div1" style="margin-left: 70px" align="center">
+
 
        </div>
+
</br>
 +
     <div class="dcpt3" style="font-size:20px;line-height:1.5;font-family: 'spr';">
 +
    <div align="left" style="font-family: 'spr';font-size:40px;border-bottom:2px solid #584b4f;">Light Control</div>
 +
</br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;As a cipher machine, it must have the ability to input information conveniently. Therefore, it is crucial to have a rapid and reliable input system. After research and discussion, we finally find the ideal solution: Light-switchable two-component systems (TCSs). Its two components are green-light system (CcaS-CcaR system) and red-light system (Cph8-OmpR system). Besides, our encrypted information is in binary form, this system could satisfy our input requirement. Following is a detailed description.
 +
</br>
 +
</br>
 +
<div align="center">
 +
        <img src="https://static.igem.org/mediawiki/2016/f/f1/ZJUfig1.jpg" height="60%" width="75%">
 +
      </div>
 +
</br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;In the green-light system, ccaS protein is fixed on the cell membrane. After combined with chromophore ho1 and pcyA, ccaS could absorb green light around 520nm wavelength long, and thus, its own phosphate group will transfer, resulting in the phosphorylation of ccaR, an intracellular protein. The ccaR then could activate the expression of PcpcG2 promoter. Using this system, optical signal can be used as input, and can be received by engineered E.coli. However, after being irradiated by red light around 650nm wavelength long, the phosphorylation transfer process (from ccaS to ccaR) will be inhibited.
 +
</br>
 
     </div>
 
     </div>
        <div class="col-md-4">
+
 
            <div id="div2" style="letter-spacing:3px">
+
</br>
        DEMONSTRATE
+
</br>
        </div>
+
 
 +
    <div class="dcpt4" style="font-size:20px;line-height:1.5;font-family: 'spr';text-align:left;">
 +
 +
&nbsp;&nbsp;&nbsp;&nbsp;After a discussion about our literature, we settled the size of each trap and the length, width, and height are 100 um, 85um and 5um, respectively, which is the most favorable one for oscillation experiment and dynamic response model. Two traps stand 150um apart at the same side, while for the opposite side, the groove is 200um wide and 100um deep which is convenient for fluid to pass. Also, according to our calculation, we are quite sure that this design can increase the flow of AHL quorum sensing substance, and can let the cells at the edge of expansion colonies be watered away, making it possible for bacteria in the traps maintaining a continuous exponential growth.For observing convenience, we divide the traps into 4 groups, and each has 30 traps. The distance between two groups is sixty thousands um.
 +
</br>
 +
</br>
 +
 
 +
 
 +
<div class="row">
 +
    <div class="col-md-6">
 +
<div align="center">
 +
        <img src="https://static.igem.org/mediawiki/2016/b/b8/Hardware-2.jpg" height="60%" width="75%">
 
       </div>
 
       </div>
    <div class="col-md-4">
 
      <div id="div1" style="margin-right: 70px">
 
        </div>
 
 
     </div>
 
     </div>
 +
        <div class="col-md-6">
 +
<div align="center">
 +
        <img src="https://static.igem.org/mediawiki/2016/3/30/Hardware-3.jpg" height="60%" width="75%">
 +
      </div>
 
   </div>
 
   </div>
 
+
</div>
 +
 
 +
</div>
 +
 
 +
 
 
</br>
 
</br>
 +
 +
    <div class="dcpt3" style="font-size:20px;line-height:1.5;font-family: 'spr';">
 +
    <div align="center" style="font-family: 'spr';font-size:40px;">Views of the device</div>
 
</br>
 
</br>
 +
 +
<div id="myCarousel" class="carousel slide" data-ride="carousel" style="width:70%;margin:0% 15%" align="center">
 +
      <!-- Indicators -->
 +
      <ol class="carousel-indicators" align="center" style="left:15%">
 +
        <li data-target="#myCarousel" data-slide-to="0" class="active"></li>
 +
        <li data-target="#myCarousel" data-slide-to="1"></li>
 +
        <li data-target="#myCarousel" data-slide-to="2"></li>
 +
        <li data-target="#myCarousel" data-slide-to="3"></li>
 +
        <li data-target="#myCarousel" data-slide-to="4"></li>
 +
      </ol>
 +
      <div class="carousel-inner" role="listbox">
 +
        <div class="item active">
 +
          <img src="https://static.igem.org/mediawiki/2016/a/a9/Hardware-4.jpg" alt="First slide">
 +
        </div>
 +
        <div class="item">
 +
          <img src="https://static.igem.org/mediawiki/2016/6/68/Hardware-5.jpg" alt="Second slide">
 +
        </div>
 +
        <div class="item">
 +
          <img src="https://static.igem.org/mediawiki/2016/6/6f/Hardware-6.jpg" alt="Third slide">
 +
      </div>
 +
    <div class="item active">
 +
          <img src="https://static.igem.org/mediawiki/2016/5/59/Hardware-7.jpg" alt="Fourth slide">
 +
        </div>
 +
    <div class="item active">
 +
          <img src="https://static.igem.org/mediawiki/2016/4/48/Hardware-8.jpg" alt="Fifth slide">
 +
        </div>
 +
      </div>
 +
      <a class="left carousel-control" href="#myCarousel" role="button" data-slide="prev">
 +
        <div style="padding-top:0%;font-size:48px;"><</div>
 +
        <span class="sr-only">Previous</span>
 +
      </a>
 +
      <a class="right carousel-control" href="#myCarousel" role="button" data-slide="next">
 +
        <div style="padding-top:55%;font-size:48px;">></div>
 +
        <span class="sr-only">Next</span>
 +
      </a>
 +
    </div>
 +
</div>
 +
 +
<div class="dcpt4" style="font-size:20px;line-height:1.5;font-family: 'spr';text-align:left;">
 +
    <div align="center" style="font-family: 'spr';font-size:40px;">Others</div>
 +
&nbsp;&nbsp;&nbsp;&nbsp;For overall experiment, we also designed a device to help us using the microfludic chip. As for the body part, the upper platform has four through-holes, for putting in the LEDs. The lower part has the two slots, size of each slot are the same as the microfluidic chip. And we have a shading baffle whose size is appropriate with slots. Devices and shading baffle are produced by 3D printing, the material we chose is resin. It has smooth surface, high precision, and good hardness. Taking into account that the device will be placed in the thermostat, we used a kind of resin that has small thermal deformation coefficient, this will ensure that assembling won’t be a problem. In order to ensure that the experiment will not be interfered by the stray light, all surfaces are sprayed with black matte paint.
 
</br>
 
</br>
  
 
+
<div class="row">
  <div class="dcpt2" style="height:80px">
+
    <div class="col-md-6">
    <div class="content2" style="padding-top:20px">
+
  <div align="center">
    <strong>Overview</strong>
+
        <img src="https://static.igem.org/mediawiki/2016/6/69/Zhuangzhizhuti.jpg" width="90%">
 +
      </div>
 
     </div>
 
     </div>
 +
        <div class="col-md-6">
 +
  <div align="center">
 +
        <img src="https://static.igem.org/mediawiki/2016/4/42/Dangban.jpg" width="90%">
 +
      </div>
 
   </div>
 
   </div>
  </br>
+
</div>
  </br>
+
</br>
  
 +
<div class="row">
 +
    <div class="col-md-6">
 +
    <div style="font-size:20px;line-height:1.5;font-family: 'spr';text-align:left;">
 +
</br>
 +
  The LED we used is a common cathode four-pin light-emitting diodes, we only use 1 (red), 2 (negative), 3 (green) three pins. The wavelengths were 630 ~ 640 nm and 515 ~ 525 nm, respectively. The brightness of the lights is around gigahertz candela.  All of them can meet our experimental requirements
 +
        </div>
 +
    </div>
 +
        <div class="col-md-6">
 +
<div align="center">
 +
        <img src="https://static.igem.org/mediawiki/2016/7/7f/LED.png" width="90%">
 +
      </div>
 +
  </div>
 +
</div>
 +
</div>
 +
</br>
  
<div align="center"><img src="https://static.igem.org/mediawiki/2016/thumb/6/69/Whole_view.jpg/800px-Whole_view.jpg" width="85%"></div>
+
</div>
  
  </br>
 
  </br>
 
    <div class="dcpt3" style="font-size:20px;font-family: 'spr';">
 
&nbsp;&nbsp;&nbsp;&nbsp;In addition to the microfluidic device as the core part, we have designed the mechanical device for the project. The whole system consists of four parts: the main body, LEDs board, shading baffle and microfluidic chip. The design details for each part are described in the hardware page.<br>
 
&nbsp;&nbsp;&nbsp;&nbsp;When assembled, four LEDs lights into the corresponding four holes, four single-pole double-throw switch on the external circuit board can switch the light color (red or green), the power switch is on the battery box. Microfluidic chip inserted into the above slot, the shading baffle, which has the same size as the microfluidic chip, is inserted into the following slot, to avoid the stray light interference. When used, the overall device will be placed in 37 ° incubator, press the four switches to adjust the LED light into the appropriate color, waiting for flora to respond to light signals. Later, take out the baffle and observer the color of each trap, and that is the "cipher text" we get.
 
  
    </div>
+
 
 
+
</div>
 
+
 
+
 
</body>
 
</body>
 
</html>
 
</html>

Revision as of 09:53, 14 October 2016

Demonstrate

Light Control

    As a cipher machine, it must have the ability to input information conveniently. Therefore, it is crucial to have a rapid and reliable input system. After research and discussion, we finally find the ideal solution: Light-switchable two-component systems (TCSs). Its two components are green-light system (CcaS-CcaR system) and red-light system (Cph8-OmpR system). Besides, our encrypted information is in binary form, this system could satisfy our input requirement. Following is a detailed description.


    In the green-light system, ccaS protein is fixed on the cell membrane. After combined with chromophore ho1 and pcyA, ccaS could absorb green light around 520nm wavelength long, and thus, its own phosphate group will transfer, resulting in the phosphorylation of ccaR, an intracellular protein. The ccaR then could activate the expression of PcpcG2 promoter. Using this system, optical signal can be used as input, and can be received by engineered E.coli. However, after being irradiated by red light around 650nm wavelength long, the phosphorylation transfer process (from ccaS to ccaR) will be inhibited.


    After a discussion about our literature, we settled the size of each trap and the length, width, and height are 100 um, 85um and 5um, respectively, which is the most favorable one for oscillation experiment and dynamic response model. Two traps stand 150um apart at the same side, while for the opposite side, the groove is 200um wide and 100um deep which is convenient for fluid to pass. Also, according to our calculation, we are quite sure that this design can increase the flow of AHL quorum sensing substance, and can let the cells at the edge of expansion colonies be watered away, making it possible for bacteria in the traps maintaining a continuous exponential growth.For observing convenience, we divide the traps into 4 groups, and each has 30 traps. The distance between two groups is sixty thousands um.


Views of the device

Others
    For overall experiment, we also designed a device to help us using the microfludic chip. As for the body part, the upper platform has four through-holes, for putting in the LEDs. The lower part has the two slots, size of each slot are the same as the microfluidic chip. And we have a shading baffle whose size is appropriate with slots. Devices and shading baffle are produced by 3D printing, the material we chose is resin. It has smooth surface, high precision, and good hardness. Taking into account that the device will be placed in the thermostat, we used a kind of resin that has small thermal deformation coefficient, this will ensure that assembling won’t be a problem. In order to ensure that the experiment will not be interfered by the stray light, all surfaces are sprayed with black matte paint.


The LED we used is a common cathode four-pin light-emitting diodes, we only use 1 (red), 2 (negative), 3 (green) three pins. The wavelengths were 630 ~ 640 nm and 515 ~ 525 nm, respectively. The brightness of the lights is around gigahertz candela. All of them can meet our experimental requirements