Difference between revisions of "Team:UrbanTundra Edmonton/Proof"

m
 
(8 intermediate revisions by 2 users not shown)
Line 14: Line 14:
 
<!--NAV LINKS-->
 
<!--NAV LINKS-->
  
 
+
  <div class="col-md-3 side-nav">
                        <div class="col-md-3 side-nav">
+
    <div class="side-nav-container">
  <div class="side-nav-container">
+
      <ul style="list-style-type: none;">
    <ul style="list-style-type: none;">
+
        <li class="side-nav-toplink">TEAM</li>
      <li class="side-nav-toplink">TEAM</li>
+
 
         <ul class="sublist">
 
         <ul class="sublist">
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Our_Story">Our Story</a></li>
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Our_Story">Our Story</a></li>
Line 24: Line 23:
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Collaborations">Collaborations</a></li>
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Collaborations">Collaborations</a></li>
 
         </ul>
 
         </ul>
      <li class="side-nav-toplink">PROJECT</li>
+
        <li class="side-nav-toplink">PROJECT</li>
 
         <ul class="sublist">
 
         <ul class="sublist">
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Description">Background</a></li>
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Description">Background</a></li>
Line 34: Line 33:
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Notebook">Notebook</a></li>
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Notebook">Notebook</a></li>
 
         </ul>
 
         </ul>
      <li class="side-nav-toplink">PARTS</li>
+
        <li class="side-nav-toplink">PARTS</li>
 
         <ul class="sublist">
 
         <ul class="sublist">
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Parts">BioBrick</a></li>
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Parts">BioBrick</a></li>
Line 40: Line 39:
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Part_Collection">Collection</a></li>
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Part_Collection">Collection</a></li>
 
         </ul>
 
         </ul>
      <li  class="side-nav-toplink">SAFETY</li>
+
        <li  class="side-nav-toplink">SAFETY</li>
 
         <ul class="sublist">
 
         <ul class="sublist">
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Lab_Safety">Lab Safety</a></li>
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Lab_Safety">Lab Safety</a></li>
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Protocals">Protocols</a></li>
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Protocals">Protocols</a></li>
 
         </ul>
 
         </ul>
      <li class="side-nav-toplink">ATTRIBUTIONS</li>
+
        <li class="side-nav-toplink">ATTRIBUTIONS</li>
 
         <ul class="sublist">
 
         <ul class="sublist">
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Attributions">Support</a></li>
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Attributions">Support</a></li>
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/FullCitations">Citations</a></li>
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/FullCitations">Citations</a></li>
 
         </ul>
 
         </ul>
      <li class="side-nav-toplink">HUMAN PRACTICES</li>
+
        <li class="side-nav-toplink">HUMAN PRACTICES</li>
 
         <ul class="sublist">
 
         <ul class="sublist">
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Integrated_Practices">Integrated Practices</a></li>
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Integrated_Practices">Integrated Practices</a></li>
Line 56: Line 55:
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Engagement">Outreach</a></li>
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Engagement">Outreach</a></li>
 
         </ul>
 
         </ul>
      <li class="side-nav-toplink">ACHIEVEMENTS</li>
+
        <li class="side-nav-toplink">ACHIEVEMENTS</li>
 
         <ul class="sublist">
 
         <ul class="sublist">
 
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/HP/Silver">Silver</a></li>
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/HP/Silver">Silver</a></li>
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/HP/Gold">Gold</a></li>
 
           <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/HP/Gold">Gold</a></li>
 +
          <li><a href="https://2016.igem.org/Team:UrbanTundra_Edmonton/Awards">Awards</a></li>
 
         </ul>
 
         </ul>
    </ul>
+
      </ul>
 +
    </div>
 
   </div>
 
   </div>
 
</div>
 
 
 
 
 
 
 
 
 
  
 
<!-- THIS IS WHERE THE CONTENT GOES-->
 
<!-- THIS IS WHERE THE CONTENT GOES-->
 
  
 
<div class="col-md-9 content-area">
 
<div class="col-md-9 content-area">
 
<div class="content-container">
 
<div class="content-container">
 +
 +
<div style="text-align: center">
 
<h1>The Bio Reaction</h1>
 
<h1>The Bio Reaction</h1>
 +
</div>
  
 
<video width="800" controls>
 
<video width="800" controls>
Line 86: Line 78:
 
</video>
 
</video>
  
<h5 style="font-size: 24px;">Aminolevulinic Acid and IPTG</h5>
 
  
<p>The LacI gene in our expression plasmid codes for Lac repressor proteins that bind to Lac operators flanking the T5 promoter. IPTG was added to our E.coli cultures prior Oxygen production in order bind to the Lac repressors, releasing their bind on the Lac operators. This in turn was allowed the expression of the Chlorite Dismutase gene since RNA polymerase was then able to bind to the T5 promoter, initiating the transcription process. The Chlorite Dismutase enzyme has a heme component in its protein structure. Aminolevulinic acid, a heme precursor, and ferric sulfate which provided the iron needed for heme production, were added to the E. coli cultures to allow for proper synthesis of Chorlite Dismutase.
+
<h4>Scaling up Oxygen Generation</h4>
 +
<p>
 +
  We repeated the above experiment at larger scale with the following modifications. 50 mL cultures were grown overnight in 200mL Erlenmeyer flasks using the same conditions described above. In place of Cld(SP+) we used a culture of E. coli that contained no plasmid as a negative control. The next day stir bars were added to each flask and the cultures were stirred at moderate speed. Solid chlorite was added to each flask to a final concentration of 0.5M. A condom was placed over each flask to collect the generated O<sub>2</sub> . Condoms were selected because of their thin, flexible nature that when filled with O<sub>2</sub>  would produce  an approximate cylinder whose volume could be calculated from it diameter and length. The results are presented in the video in the video above.
 
</p>
 
</p>
  
<h5 style="font-size: 24px;">Oxygen Production</h5>
 
  
<p>Having successfully transformed the Cld- gene into our E. coli chassis, we progressed to test the capability of the Chlorite Dismutase enzyme to convert chlorite ions (ClO₂⁻) into the useful byproduct, oxygen gas (O₂) and chloride ions in solution (Cl-). The purpose of this investigation was to determine whether or not the enzyme synthesized by the chassis was functional.  Three trials of this investigation were conducted, where solid Sodium Chlorite (NaClO₂), at concentrations of 0.1M and 0.2M, were introduced into two separate volumes of transformed E.coli cultures suspended in 50 mL of LB Broth. The system was closed immediately after the addition of the enzyme’s chlorite substrate and the oxygen produced by enzymatic action was captured with a specifically allocated balloon which the height of was measured using a ruler. The results of this investigation will determine if our construct does work properly and roughly indicate the experimental yield to expected.
 
</p>
 
  
<!--EMBED OXYGEN VIDEO-->
+
<h5 style="font-size: 24px;">Conceptual Bioreactor Sketch</h5>
 
+
 
+
<h5 style="font-size: 24px;">Concept Sketch</h5>
+
  
 
<img src="https://static.igem.org/mediawiki/2016/2/28/T--UrbanTundra_Edmonton--BioreactorConcept.png" width="600px">
 
<img src="https://static.igem.org/mediawiki/2016/2/28/T--UrbanTundra_Edmonton--BioreactorConcept.png" width="600px">
Line 135: Line 122:
  
 
{{UrbanTundra_Edmonton/Footer}}
 
{{UrbanTundra_Edmonton/Footer}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<!--{{UrbanTundra_Edmonton/ResearchPages}}
 
 
<html>
 
 
<div class="column full_size">
 
 
 
<p>
 
iGEM teams are great at making things work! We value teams not only doing an incredible job with theoretical models and experiments, but also in taking the first steps to make their project real.
 
</p>
 
 
 
<h4> What should we do for our proof of concept? </h4>
 
<p>
 
You can assemble a device from BioBricks and show it works. You could build some equipment if you're competing for the hardware award. You can create a working model of your software for the software award. Please note that this not an exhaustive list of activities you can do to fulfill the gold medal criterion. As always, your aim is to impress the judges!
 
</p>
 
 
</div>
 
 
 
 
</div>
 
 
</html>-->
 

Latest revision as of 06:10, 11 December 2016


Urban Tundra | Intelligent Innovation

The Bio Reaction

Scaling up Oxygen Generation

We repeated the above experiment at larger scale with the following modifications. 50 mL cultures were grown overnight in 200mL Erlenmeyer flasks using the same conditions described above. In place of Cld(SP+) we used a culture of E. coli that contained no plasmid as a negative control. The next day stir bars were added to each flask and the cultures were stirred at moderate speed. Solid chlorite was added to each flask to a final concentration of 0.5M. A condom was placed over each flask to collect the generated O2 . Condoms were selected because of their thin, flexible nature that when filled with O2 would produce an approximate cylinder whose volume could be calculated from it diameter and length. The results are presented in the video in the video above.

Conceptual Bioreactor Sketch
  1. Martian soil and water are mixed together to create a sludge in this first module.
  2. The Martian soil solution is filtered through to the next stage where the perchlorate ions are absorbed by rods filled with activated charcoal.
  3. The activated charcoal rods are shunted into a module with boiling water. Boiling the water releases the perchlorate ions creating a solution of perchlorate ions. The solution is also diluted if necessary at this stage if the perchlorate concentration is too high, to ensure the survival of the E. Coli in the next stage.
  4. The perchlorate solution is precipitated into a chamber layered with the genetically modified E. Coli where the perchlorate is converted into oxygen and chloride ions. Biomass from the mission is used to feed the E. Coli, and the waste can be reused as fertilizer for possible agriculture operations. The oxygen gas and chloride is separated by a membrane after exiting the chamber.

Explore With Us.