Difference between revisions of "Team:ZJU-China/Experiments"

Line 192: Line 192:
 
</div>
 
</div>
 
<div class="dcpt4" style="font-size:20px;line-height:1.5;font-family: 'spr';text-align:left;">
 
<div class="dcpt4" style="font-size:20px;line-height:1.5;font-family: 'spr';text-align:left;">
       <div align="left" style="font-family: 'spr';font-size:40px;border-bottom:2px solid #584b4f;">Documentation</div>
+
       <div align="left" style="font-family: 'spr';font-size:40px;border-bottom:2px solid #584b4f;">Documentation</div></br>
 
<div class="row" style="font-weight:bold;">
 
<div class="row" style="font-weight:bold;">
 
     <div class="col-md-9">
 
     <div class="col-md-9">
Line 201: Line 201:
 
     </div>
 
     </div>
 
   </div>
 
   </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    1 Brainstorming for ideas
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    5/1-5/31
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    Voting and deciding on our project: ENIGMA
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    5/31
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    2 Searching for relevant information and optimizing the idea
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    6/1-6/18
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    3 Experiments preparation
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    6/18-6/30
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    4 Getting advice on the project
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    6/1-now
 +
    </div>
 +
  </div>
 +
</br>
 +
<div class="row" style="font-weight:bold;">
 +
    <div class="col-md-9">
 +
    PART B Experiments
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    6/29-10/10
 +
    </div>
 +
  </div>
 +
<div class="row" style="font-weight:bold;">
 +
    <div class="col-md-9">
 +
    Module 1 Photo-related control system
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    1 Plasmid construction (Green Light & Red light Plasmids)
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    6/30-7/20
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    2 Function verification
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    7/20-8/30
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    3 Modeling
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    7/15-8/30
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    4 Coupling with other modules
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    </div>
 +
  </div>
 +
</br>
 +
<div class="row" style="font-weight:bold;">
 +
    <div class="col-md-9">
 +
    Module 2 Oscillation system
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    1 Plasmid construction (Single & Double period)
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    6/30-7/15
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    2 Device: Micro-fluidics
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    7/2-7/20
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    &nbsp;&nbsp;&nbsp;&nbsp;Design
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    7/2-7/10
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    &nbsp;&nbsp;&nbsp;&nbsp;Production
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    7/10-7/20
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    3 Demonstration of single period oscillation
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    &nbsp;&nbsp;&nbsp;&nbsp;In a tube
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    7/16-7/25
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    &nbsp;&nbsp;&nbsp;&nbsp;In Micro-fluidics
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    7/16-7/25
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    4 Demonstration of double period oscillation
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    8/5-8/30
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    5 Modeling
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    7/15-8/30
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    6 Coupling with other modules
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    </div>
 +
  </div>
 +
</br>
 +
<div class="row" style="font-weight:bold;">
 +
    <div class="col-md-9">
 +
    Module 3 Logic Gates
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    1 Plasmid construction (Improvements and Adjustments)
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    6/30-7/28
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    2 Function verification (Previous parts and new parts)
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    7/20-8/30
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    3 Modeling
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    7/15-8/30
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    4 Coupling with other modules
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    </div>
 +
  </div>
 +
</br>
 +
<div class="row" style="font-weight:bold;">
 +
    <div class="col-md-9">
 +
    Coupling 1 Photo-related control system & Logic gates (Cipher Machine of the First Generation)
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    1 Plasmid construction (Basing on existing plasmids)
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    9/1-9/10
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    2 Demonstration
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    9/10-9/25
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    3 Modeling
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    9/8-9/25
 +
    </div>
 +
  </div>
 +
</br>
 +
<div class="row" style="font-weight:bold;">
 +
    <div class="col-md-9">
 +
    Coupling 2 All three Modules (the ENIGMA machine)
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    1 Plasmid construction (Basing on existing plasmids)
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    9/20-10/3
 +
    </div>
 +
  </div>
 +
<div class="row">
 +
    <div class="col-md-9">
 +
    2 Demonstration
 +
    </div>
 +
    <div class="col-md-3" style="text-align:right;">
 +
    10.4-Now
 +
    </div>
 +
  </div>
 +
 +
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 10:42, 19 October 2016

Experiment

Light Control

    To achieve the function of the first generation of our cipher machine, our bacteria should be sensitive enough to the light signal around specific wavelength long and output a fluorescent signal which should be strong enough to be detected. So we designed several experiments to prove the sensitivity and reliability of the two TCSs.
    Firstly, we chose sfGFP as the reporter and exposed our bacteria to red or green light when culturing. After some time, we harvested all the culture and measured the fluorescent intensity .
    What’s more , to make our cipher machine more complicated and hard to be cracked, we induced the oscillation circuit. But the key to couple these parts was to prove that the time our “light-sensors” need between sensing the light and output a signal was exactly shorter than the half-period of oscillation. So we tried to measure this delay time of the two TCSs. We also tried to stimulate this process by modeling.
    Here we want to show our sincere appreciation to Team HZAU who had provided us with original plasmids the paper used, also to Team XJTLU who had designed the device for culturing the bacteria and measuring the fluorescent intensity.

Logic gate

    In order to validate the feasibility of the logic gate part, we designed experiment from the following aspects.
    
1. Qualitative experiment
        We set 4 experimental groups and 1 control group to validate the logic gate qualitatively. The control group is MG1655 without plasmid that contains the logic gate circuit transformation. The 4 experimental groups are MG1655 with target plasmid transformation. And the treatments are: 1) adding nothing, 2) adding IPTG, 3) adding ARA, 4) adding both IPTG and ARA.By comparing the data from these 5 groups, we can find if there is any leakage of the two promoter, and validate the circuit.

    
2. Quantitative experiment
        We set a series of concentration gradient for ARA and IPTG from 10-7M/L to 10-3M/L. The specific setting is as follows.


         The group that neither ARA nor IPTG is added is set as the control group, in order to proof the rigor of the logic gate, and explore the minimum concentration to trigger the expression of the circuit.

    
3. The exploration of the response time
        In order to explore the response time of the logic gate circuit, we change the time of adding ARA and IPTG. We set several experimental groups at one-hour intervals, and measure the fluorescence intensity to find the response time.

Oscillation

    
1. Determination of the relationship between the concentration of AHL molecule and the pluxR response strength
        In order to understand and describe the state of the single period oscillation system better, we need to know the relationship between the pluxR response strength and the AHL molecular concentration. To this end, we designed the AHL concentration gradient from 10^-11 to 10^-6, and used it for the induction of bacteria that contain pLuxR-sfGFP report loop. After fully cultured, the fluorescence intensity was measured, and we can get the concentration of AHL -- fluorescence intensity diagram.
    
2. Detection of single period oscillation system
         In order to detect single-period oscillation system composed of pTD103aiiA and pTD103luxI-sfGFP, these two plasmids were co-transfected into MG1655.The selected positive clones were cultured overnight. We inoculated them in 96-well plates in 1:1000, culture under 37°C and check the fluorescence intensity of GFP, to monitor the occurrence of oscillation.
    
3. Validation of the single period oscillation system in a microfluidic device
         By analyzing the data, we found that, because of the increase in the amount of bacteria as well as the accumulation of AHL, the oscillation will become unstable, and the whole system will collapse, too. In order to eliminate the influence of all above, we designed a microfluidic device. Microfluidic chip can provide sufficient nutrition for the growth of the bacteria and wash away excess bacteria and AHL, so that the system can run stably. Under the fluorescence microscope, we captured pictures every 5min.
    
4. The construction of double period oscillation system
        In order to realize the double periodic oscillation, we also need to introduce another kind of auto-inducer into the oscillation system, we chose DPD, another auto-inducer in E.coli. We connected RBS with luxS to aiiA, which allows them to co-express. LuxS catalyzes the formation of DPD, so that the concentration of DPD in theory will be a half cycle difference with the peak of AHL, we named it as pTD103aiiA-luxS. PLsr is regulated by DPD promoter, it is followed by YFP as a reporter gene, so that we can monitor the change of the concentration of DPD, we named it as pTD103YFP. pTD103aiiA-luxS, pTD103luxI-sfGFP and pTD103YFP three plasmids constitute a double cycle system, sfGFP and YFP as reporter gene. We hope to observe the green and yellow light stable appear alternately, and each cycle length is fixed.
    
5. Detection of double periodic oscillation system
         As the method we used for the detection of single period oscillation, we put the treated bacteria solutio into the microfluidic device, and inject the fresh LB with proper flow rate, in order to stabilize the system. Under the fluorescence microscope, we captured pictures every 5min.
Documentation

PART A Brainstorming and Information Gathering
5/1-6/28
1 Brainstorming for ideas
5/1-5/31
Voting and deciding on our project: ENIGMA
5/31
2 Searching for relevant information and optimizing the idea
6/1-6/18
3 Experiments preparation
6/18-6/30
4 Getting advice on the project
6/1-now

PART B Experiments
6/29-10/10
Module 1 Photo-related control system
1 Plasmid construction (Green Light & Red light Plasmids)
6/30-7/20
2 Function verification
7/20-8/30
3 Modeling
7/15-8/30
4 Coupling with other modules

Module 2 Oscillation system
1 Plasmid construction (Single & Double period)
6/30-7/15
2 Device: Micro-fluidics
7/2-7/20
    Design
7/2-7/10
    Production
7/10-7/20
3 Demonstration of single period oscillation
    In a tube
7/16-7/25
    In Micro-fluidics
7/16-7/25
4 Demonstration of double period oscillation
8/5-8/30
5 Modeling
7/15-8/30
6 Coupling with other modules

Module 3 Logic Gates
1 Plasmid construction (Improvements and Adjustments)
6/30-7/28
2 Function verification (Previous parts and new parts)
7/20-8/30
3 Modeling
7/15-8/30
4 Coupling with other modules

Coupling 1 Photo-related control system & Logic gates (Cipher Machine of the First Generation)
1 Plasmid construction (Basing on existing plasmids)
9/1-9/10
2 Demonstration
9/10-9/25
3 Modeling
9/8-9/25

Coupling 2 All three Modules (the ENIGMA machine)
1 Plasmid construction (Basing on existing plasmids)
9/20-10/3
2 Demonstration
10.4-Now
Contact Us
Room 413,Biology lab center, Zijingang Campus
Zhejiang University, YuHangTang Road NO.866
Hangzhou, China
iGEM ZJU-China 2016 Team
igem_zjuchina_2016@outlook.com