Difference between revisions of "Team:Stanford-Brown/SB16 BioMembrane p-Aramid"

Line 174: Line 174:
  
 
<div class="row">
 
<div class="row">
<div class="col-sm-12 pagetext">Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here.  
+
<div class="col-sm-12 pagetext">Current industrial production of Kevlar® is based on materials which are derived from petrochemicals. The long term use of fossil fuels is hazardous to the environment and will become unsustainable as our fuel sources are exhausted. By replacing the monomers 1,4-phenylene-diamine and terephthaloyl chloride with a single biologically produced monomer-- para-aminobenzoic acid (pABA) -- our team can manufacture poly-pABA, a cost-efficient and ecologically sound p-aramid Kevlar® analogue.
 +
 
 +
Our primary goal is to optimize the production of pABA by identifying and isolating genes relevant for pABA synthesis and transforming them in <i>Escherichia coli (E. coli)</i>.
 
</div> <!--END col-sm-12-->
 
</div> <!--END col-sm-12-->
 
</div>
 
</div>

Revision as of 20:54, 15 October 2016


Stanford-Brown 2016

p-Aramid team member Anna introduces the p-aramid project

Why aramids?

For our exploration purposes, it is important to have a membrane that can withstand harsh environments without bursting. While our collagen-elastin fiber and latex polymer display promising properties of elasticity and strength, their ability to withstand high physical stress is limited. Due to its rigidity (70,500 MPa [1]), toughness (2,920 MPa [1]), and low density (1.44 g/cm³ [1]), Kevlar® is highly capable of meeting the unique needs of inflatable modules and habitats. It can act as both a lightweight balloon reinforcement and shield against atmospheric debris. In addition, it is also highly resistant to chemical, thermal, and physical wear--making it ideal for durability in a harsh environment. Today, a Kevlar® composite is used as a protective outer covering for the Bigelow Space Module on the International Space Station for exactly these reasons. We wanted to make an aramid fiber similar in structure to Kevlar so that it can exhibit those same desirable properties that Kevlar possesses.
Current industrial production of Kevlar® is based on materials which are derived from petrochemicals. The long term use of fossil fuels is hazardous to the environment and will become unsustainable as our fuel sources are exhausted. By replacing the monomers 1,4-phenylene-diamine and terephthaloyl chloride with a single biologically produced monomer-- para-aminobenzoic acid (pABA) -- our team can manufacture poly-pABA, a cost-efficient and ecologically sound p-aramid Kevlar® analogue. Our primary goal is to optimize the production of pABA by identifying and isolating genes relevant for pABA synthesis and transforming them in Escherichia coli (E. coli).

Section Title

Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here.
Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here. Stanford-Brown iGEMmers paste your contributions here.