Difference between revisions of "Team:Stanford-Brown/Integrated Practices"

Line 273: Line 273:
 
</div>
 
</div>
 
<div class="row">
 
<div class="row">
<div class="col-sm-12 pagetext">
+
<div class="col-sm-12 pagetext">When I (Amy) met with Dr. Schauer-Gimenez, she explained that her company was in the midst of the difficult scale-up process.  There are many stages to this process: biomaterials manufacturers must adapt their procedures to increasing scales of production, and there are many decisions to be made along the way.  Take one example: Dr. Schauer-Gimenez mentioned that the USDA facility, where Mango Materials does pilot testing, houses eight different industrial-scale centrifuges. Mango’s original protocols were developed in Stanford research labs, where the team used typical lab bench centrifuges.  They now need to predict which industrial-scale centrifuges best suit their purpose.  The Mango team has run into many such unanticipated junctures while transforming their lab success into a commercial-scale process, and they have had to “wing it” a bit. Dr. Schauer-Gimenez laughed while telling me about one Macgyver-like strategy to filter wastewater for feedstock: the team lined up Costco water filters, connecting them with pipes from Home Depot.  The next scale-up level would require an entirely different strategy by which to accomplish this step.  Dr. Schauer-Gimenez told me that the greatest unanticipated expense for fledgling biomaterials companies tends to be spent figuring out how to extract desired polymers from cells. Typical lab techniques (like using chloroform to dissolve cell membranes) are not scalable.  Companies like Mango Materials develop their own secret protocols to address this problem.
 +
 
 
</div> <!--END col-sm-12-->
 
</div> <!--END col-sm-12-->
  
Line 279: Line 280:
 
</div>
 
</div>
 
<div class="row">
 
<div class="row">
<div class="col-sm-12 pagetext">
+
<div class="col-sm-12 pagetext">The Mango Materials PHB will need to be price competitive with polyactic acid (PLA) and polypropylene in order to achieve goal impact, Dr. Schauer-Gimenez explained, because 80% of consumers care only about cost efficiency. PLA currently sells for around $1 per pound, while polyhydroxyalkanoates (PHA), the larger category of biodegradable plastic which includes PHB, sells for about $3 per pound.  Dr. Schauer-Gimenez laughed: “Even our Berkeley friends who are environmentally conscious won’t pay $3 a pound for plastic!” 
 +
 
 
</div> <!--END col-sm-12-->
 
</div> <!--END col-sm-12-->
  
Line 285: Line 287:
 
</div>
 
</div>
 
<div class="row">
 
<div class="row">
<div class="col-sm-12 pagetext">
+
<div class="col-sm-12 pagetext">By the time our meeting was over, I had realized that investment in scale-up was not trivial. Without going through this process ourselves, it would be difficult to realistically project price, yield, and environmental impact of our latex manufacturing method.  This meeting also reinforced the message to our team that we will not be able to influence manufacturing practices unless we can sustainably sell latex at or below prevailing market prices.
 +
 
 
</div> <!--END col-sm-12-->
 
</div> <!--END col-sm-12-->
  

Revision as of 01:22, 20 October 2016


Stanford-Brown 2016

Integrated Human Practices

We have organized the “human practices” elements of our research this summer into two categories, which follow from the two spaces in which our technology might be applied: outer space and Earth.

Space Applications: Planetary Protection

We were initially inspired to create a bioballoon for atmospheric research on Mars and other planetary bodies. Planetary scientists need to find ways to feasibly investigate the life history of other planets while still preserving these spaces as pristine environments for future generations of researchers. We wanted to develop a tool that could help them.
We spoke to several planetary scientists about the profound significance of responsible research on planets like Mars and Venus and on moons like Titan and Europa. These researchers included Dr. James Head, Louis and Elizabeth Scherck Distinguished Professor of Geological Sciences at Brown University, investigator on several NASA and Russian Space missions, and current co-investigator for the NASA MESSENGER mission to Mercury and Lunar Reconnaissance Orbiter; Dr. Lynn J. Rothschild, our team PI, evolutionary biologist and astrobiologist at NASA Ames Research Center, Adjunct Professor at Brown University (Molecular and Cellular Biology and Biochemistry) and at UC Santa Cruz (Microbiology and Environmental Toxicology); Dr. Jill Tarter, Bernard M. Oliver Chair for Search for Extraterrestrial Intelligence (SETI) Research at the SETI Institute in Mountain View, California; and Dr. Alan Stern, former chief of all space and Earth science programs (2007-2008), current leader of NASA’s New Horizons mission to Pluto and the Kuiper Belt, and current Chief Scientist at World View Enterprises, a company developing high-altitude balloons for commercial use in research and private space exploration. Listen to the podcasts of our interviews with Dr. Rothschild, Professor Head and Dr. Tarter here.
These researchers conveyed to us the inestimable value of origin of life research on other planets. This research helps us better understand and appreciate our position in the universe. It forces us to reconsider our definitions of life (if we found “life” on another planet, would we recognize it?) and confront the precariousness of human existence (what were the conditions that allowed life to appear and evolve?). NASA research on Mars also explores the possibility of human interplanetary colonization.
Interplanetary research is expensive both in terms of money and of time. It depends upon sturdy, efficient research tools that can supply information to current scientists without compromising future studies. Biological research tools (like our balloon) that could be developed onsite and thus eliminate transportation costs would, in theory, propel research forward. However, any potential benefit to this technology would be quickly negated if those tools were to contaminate the planet with Earth life.
Developers of biotechnology for space research therefore need to go to great lengths to mitigate the risk of interplanetary contamination. NASA’s Office of Planetary Protectionhas established a set of guidelines by which to evaluate appropriate precautions for planetary research. These guidelines are designed to protect “solar system bodies […] from contamination by Earth life, and [to protect] Earth from possible life forms that may be returned from other solar system bodies.” The policies most relevant to our summer research include “NPR 8020.12D: Planetary Protection Provisions for Robotic Extraterrestrial Missions” and “NPG 8020.7G: Biological Control for Outbound and Inbound Planetary Spacecraft.” Since our bioballoon would ideally be used for research on planets with the potential to support Earth life, it would need to comply with the Mission Category IVb and IVc regulations designed for landing/probe missions investigating extant life on Mars.
After reviewing these documents, we quickly realized that if we wanted to develop a practical tool for interplanetary life research, that tool would need to be completely devoid of life. Though our materials could be produced in living organisms, the final balloon mechanisms would need to work in vitro. We then determined our project categories:
1) We would need to produce materials in bacteria that could be used for a balloon membrane. These materials would need to be thoroughly purified and separated from live cells before balloon construction.
2) We would need to come up with atmospheric sensing and UV protection mechanisms that could operate in vitro and attach to a balloon membrane.
The problem of how one might operate a Mars onsite synthetic biology lab and sterilize the resulting materials remains an area for future research. However, we have intentionally designed our bioballoon so that it might be compatible with future protocols.

Earth Applications: The Problem of Environmental Sustainability

Biologically produced materials and sensors have important applications closer to home as well. Latex, for example, is used in a variety of commercial products (including balloons). We decided to use our latex project example to frame questions about the feasibility and potential benefit of our work for Earth manufacturing.
We found ourselves asking, “What would be the real benefit of being able to produce latex in bacteria for Earth applications? We tend to assume that we’re working on an environmentally friendly technology, but would our method really be more environmentally friendly than growing latex in Southeast Asia?” We started reaching out to people who might be able to help us answer these questions.
First, we met with Dr. Anne Schauer-Gimenez of Mango Materials, whose company produces polyhydroxybutyrate (PHB), a biodegradable plastic, by a novel method. Like other biomaterials companies, Mango Materials depends on bacteria to produce their plastic; however, their bacterial ecosystem runs on methane gas. In theory, the Mango Materials plastic should create a closed-loop cycle: methane fuels plastic production, the plastic releases methane upon degeneration, and the same net methane is used to produce more plastic. The Mango Materials PHB would replace polypropylene, which is made from fossil fuels.
When I (Amy) met with Dr. Schauer-Gimenez, she explained that her company was in the midst of the difficult scale-up process. There are many stages to this process: biomaterials manufacturers must adapt their procedures to increasing scales of production, and there are many decisions to be made along the way. Take one example: Dr. Schauer-Gimenez mentioned that the USDA facility, where Mango Materials does pilot testing, houses eight different industrial-scale centrifuges. Mango’s original protocols were developed in Stanford research labs, where the team used typical lab bench centrifuges. They now need to predict which industrial-scale centrifuges best suit their purpose. The Mango team has run into many such unanticipated junctures while transforming their lab success into a commercial-scale process, and they have had to “wing it” a bit. Dr. Schauer-Gimenez laughed while telling me about one Macgyver-like strategy to filter wastewater for feedstock: the team lined up Costco water filters, connecting them with pipes from Home Depot. The next scale-up level would require an entirely different strategy by which to accomplish this step. Dr. Schauer-Gimenez told me that the greatest unanticipated expense for fledgling biomaterials companies tends to be spent figuring out how to extract desired polymers from cells. Typical lab techniques (like using chloroform to dissolve cell membranes) are not scalable. Companies like Mango Materials develop their own secret protocols to address this problem.
The Mango Materials PHB will need to be price competitive with polyactic acid (PLA) and polypropylene in order to achieve goal impact, Dr. Schauer-Gimenez explained, because 80% of consumers care only about cost efficiency. PLA currently sells for around $1 per pound, while polyhydroxyalkanoates (PHA), the larger category of biodegradable plastic which includes PHB, sells for about $3 per pound. Dr. Schauer-Gimenez laughed: “Even our Berkeley friends who are environmentally conscious won’t pay $3 a pound for plastic!”
By the time our meeting was over, I had realized that investment in scale-up was not trivial. Without going through this process ourselves, it would be difficult to realistically project price, yield, and environmental impact of our latex manufacturing method. This meeting also reinforced the message to our team that we will not be able to influence manufacturing practices unless we can sustainably sell latex at or below prevailing market prices.