Difference between revisions of "Team:MIT/Experiments/Recombinases"

Line 23: Line 23:
 
<div style='width: 340px; text-align: center;'><i>A recombinase excises a segment of DNA.<br><b> Source: </b>University of Rochester Introductory Biochemistry.</i></div>
 
<div style='width: 340px; text-align: center;'><i>A recombinase excises a segment of DNA.<br><b> Source: </b>University of Rochester Introductory Biochemistry.</i></div>
 
</a>
 
</a>
<p>  
+
<p style="font-family:Verdana;">  
 
Endometriosis cells have distinct characteristics at different points in the menstrual cycle, presenting a major challenge in identifying diseased cells. Capturing chronological molecular traits is very important in the diagnosis of many diseases. For our project, we use <b>recombinases</b>, DNA binding proteins, to achieve this <b>temporal specificity</b>. <br>Recombinases are enzymes that can <b>recognize recombination sites</b>, and can either cut out the DNA between these recognition sites or invert the DNA sequence. There are two main families of recombinases: serine recombinases (also sometimes called serine integrases) and tyrosine recombinases. Serine integrases invert sequences, while tyrosine recombinases can either cut or flip sequences depending on the orientation of recognition sites. Some recombinases exhibit <b>unidirectionality</b>, meaning that once they reverse or cut out the sequence, this action cannot be undone. This means that instead of behaving like a switch, capable of turning on or off, <b>unidirectional recombinases behave as latches</b>. Thus, unidirectional recombinases display higher efficacy in DNA modification than bidirectional recombinases. <br>We can use recombinases as biological "latches" in our circuit to gain temporal specificity. Once the abnormal hormone level and the miRNA profile characteristic of a diseased cell have been identified during one phase of the menstrual cycle, the <b>first recombinase</b> can be activated to essentially <b>“lock in”</b> that information. When the second half of the circuit confirms the cell as being diseased in the second phase of the cycle, a <b>second recombinase latch</b> can be triggered, <b>activating the overall circuit</b>.  
 
Endometriosis cells have distinct characteristics at different points in the menstrual cycle, presenting a major challenge in identifying diseased cells. Capturing chronological molecular traits is very important in the diagnosis of many diseases. For our project, we use <b>recombinases</b>, DNA binding proteins, to achieve this <b>temporal specificity</b>. <br>Recombinases are enzymes that can <b>recognize recombination sites</b>, and can either cut out the DNA between these recognition sites or invert the DNA sequence. There are two main families of recombinases: serine recombinases (also sometimes called serine integrases) and tyrosine recombinases. Serine integrases invert sequences, while tyrosine recombinases can either cut or flip sequences depending on the orientation of recognition sites. Some recombinases exhibit <b>unidirectionality</b>, meaning that once they reverse or cut out the sequence, this action cannot be undone. This means that instead of behaving like a switch, capable of turning on or off, <b>unidirectional recombinases behave as latches</b>. Thus, unidirectional recombinases display higher efficacy in DNA modification than bidirectional recombinases. <br>We can use recombinases as biological "latches" in our circuit to gain temporal specificity. Once the abnormal hormone level and the miRNA profile characteristic of a diseased cell have been identified during one phase of the menstrual cycle, the <b>first recombinase</b> can be activated to essentially <b>“lock in”</b> that information. When the second half of the circuit confirms the cell as being diseased in the second phase of the cycle, a <b>second recombinase latch</b> can be triggered, <b>activating the overall circuit</b>.  
 
</p>
 
</p>
Line 35: Line 35:
 
<h1 style="color:#ffffff; background-color:#0f3d7f; -moz-border-radius: 15px; -webkit-border-radius: 15px; padding:15px; text-align: center; font-family: Trebuchet MS"> Do our recombinases work?</h1>
 
<h1 style="color:#ffffff; background-color:#0f3d7f; -moz-border-radius: 15px; -webkit-border-radius: 15px; padding:15px; text-align: center; font-family: Trebuchet MS"> Do our recombinases work?</h1>
  
<p>  
+
<p style="font-family:Verdana;">  
 
We investigated <b>2 models of recombinase for regulating gene expression</b>:</p>
 
We investigated <b>2 models of recombinase for regulating gene expression</b>:</p>
<ol>
+
<ol style="Verdana;">
 
     <li>Using a unidirectional tyrosine recombinase (Cre or FLP) to excise a transcriptional stop signal, allowing a downstream gene to be expressed.</li>
 
     <li>Using a unidirectional tyrosine recombinase (Cre or FLP) to excise a transcriptional stop signal, allowing a downstream gene to be expressed.</li>
 
     <li>Using a unidirectional serine recombinase (TP901) to flip gene from an off to an on orientation.</li>
 
     <li>Using a unidirectional serine recombinase (TP901) to flip gene from an off to an on orientation.</li>
Line 45: Line 45:
 
     <div style="width: 499px; text-align: center;display:inline-block;"><i><b>Figure. </b>Regulating gene expression using recombinases models.</i></div>
 
     <div style="width: 499px; text-align: center;display:inline-block;"><i><b>Figure. </b>Regulating gene expression using recombinases models.</i></div>
 
</div>
 
</div>
<p> Our experimental data showed that:</p>
+
<p style="font-family:Verdana;"> Our experimental data showed that:</p>
<ol>     
+
<ol style="font-family:Verdana;">     
 
      
 
      
 
     <li>The <b>flipped gene system (2nd model)</b> successfully <b>knocked down the expression of the gene</b>, while the transcriptional stop signal (1st model) did not.</li>   
 
     <li>The <b>flipped gene system (2nd model)</b> successfully <b>knocked down the expression of the gene</b>, while the transcriptional stop signal (1st model) did not.</li>   
Line 58: Line 58:
 
<h1 style="color:#ffffff; background-color:#0f3d7f; -moz-border-radius: 15px; -webkit-border-radius: 15px; padding:15px; text-align: center; font-family: Trebuchet MS"> Challenges with High Efficiency of Recombinases</h1>   
 
<h1 style="color:#ffffff; background-color:#0f3d7f; -moz-border-radius: 15px; -webkit-border-radius: 15px; padding:15px; text-align: center; font-family: Trebuchet MS"> Challenges with High Efficiency of Recombinases</h1>   
  
<p> Recombinases are highly efficient enzymes. When combined with a high-basal-activity promoter, this presents a challenge. A few copies of the recombinase due to promoter's leaky expression, could lead to significant amount of undesired output gene expression. In order to effectively use of recombinases as biological latches, basal expression must be reduced as much as possible. A strong repression system must be used in order to reduce leaky expression.
+
<p style="font-family:Verdana;"> Recombinases are highly efficient enzymes. When combined with a high-basal-activity promoter, this presents a challenge. A few copies of the recombinase due to promoter's leaky expression, could lead to significant amount of undesired output gene expression. In order to effectively use of recombinases as biological latches, basal expression must be reduced as much as possible. A strong repression system must be used in order to reduce leaky expression.
 
</p>
 
</p>
  
 
<h2 style="color: #000000; text-decoration:underline; font-family: Trebuchet MS;"> Repressible Promoters</h2>
 
<h2 style="color: #000000; text-decoration:underline; font-family: Trebuchet MS;"> Repressible Promoters</h2>
  
<p>  
+
<p style="font-family:Verdana;">  
 
In order to gain tighter control of the recombinases, we paired them with repressible promoters that do not allow transcription of the recombinase to take place if a specific repressor protein is present. The three repressors we investigated included BM3R1, TAL14, and TAL21 because of their demonstrated success in literature.  
 
In order to gain tighter control of the recombinases, we paired them with repressible promoters that do not allow transcription of the recombinase to take place if a specific repressor protein is present. The three repressors we investigated included BM3R1, TAL14, and TAL21 because of their demonstrated success in literature.  
 
</p>
 
</p>
Line 74: Line 74:
 
<p style = "font-family:Verdana;"> We did a lot of research into effective high level repression systems, such as degradation tag RNA-based gene regulation systems. After talking to experts in the Dr. Weiss' lab, we decided to test the L7Ae k-turn system due to the availability of the system's components.  
 
<p style = "font-family:Verdana;"> We did a lot of research into effective high level repression systems, such as degradation tag RNA-based gene regulation systems. After talking to experts in the Dr. Weiss' lab, we decided to test the L7Ae k-turn system due to the availability of the system's components.  
 
<div style="text-decoration: none; color: #000000; float: center; margin: 15px;text-align:center">
 
<div style="text-decoration: none; color: #000000; float: center; margin: 15px;text-align:center">
     <img src="https://static.igem.org/mediawiki/2016/0/06/T--MIT--TP901_flipped_vsMarker.png" alt="" style="width:555px;margin-bottom:10px;">
+
     <img src="https://static.igem.org/mediawiki/2016/0/06/T--MIT--TP901_flipped_vsMarker.png" alt="" style="width:100%;margin-bottom:10px;">
     <div style="width: 499px; text-align: center;display:inline-block;"><i><b>Figure. </b>Number of k-turn motifs at the 5'UTR can tune the expression of the regulated gene (TP901). </i></div>
+
     <div style="width: 90%; text-align: center;display:inline-block;"><i><b>Figure. </b>Number of k-turn motifs at the 5'UTR can tune the expression of the regulated gene (TP901). </i></div>
 
</div>
 
</div>
 
      
 
      

Revision as of 03:41, 19 October 2016

Recombinases Background Information

Recombinases:
Giving Memory to a Genetic Circuit

How can our circuit demonstrate temporal specificity?

Recombinase excision gif
A recombinase excises a segment of DNA.
Source: University of Rochester Introductory Biochemistry.

Endometriosis cells have distinct characteristics at different points in the menstrual cycle, presenting a major challenge in identifying diseased cells. Capturing chronological molecular traits is very important in the diagnosis of many diseases. For our project, we use recombinases, DNA binding proteins, to achieve this temporal specificity.
Recombinases are enzymes that can recognize recombination sites, and can either cut out the DNA between these recognition sites or invert the DNA sequence. There are two main families of recombinases: serine recombinases (also sometimes called serine integrases) and tyrosine recombinases. Serine integrases invert sequences, while tyrosine recombinases can either cut or flip sequences depending on the orientation of recognition sites. Some recombinases exhibit unidirectionality, meaning that once they reverse or cut out the sequence, this action cannot be undone. This means that instead of behaving like a switch, capable of turning on or off, unidirectional recombinases behave as latches. Thus, unidirectional recombinases display higher efficacy in DNA modification than bidirectional recombinases.
We can use recombinases as biological "latches" in our circuit to gain temporal specificity. Once the abnormal hormone level and the miRNA profile characteristic of a diseased cell have been identified during one phase of the menstrual cycle, the first recombinase can be activated to essentially “lock in” that information. When the second half of the circuit confirms the cell as being diseased in the second phase of the cycle, a second recombinase latch can be triggered, activating the overall circuit.

Figure. Showing the mechanism of recombinase biological latches capturing temporal specificity during the estrogen and progesterone cycles. 1) Disease-related biological traits during the estrogen high phase activate the inducible promoter, leading to 2) expression of recombinase 1. Recombinase 1 would then 3) "lock-in" this information by irreversible gene modification. Similarly, 4) during the progesterone high phase, biomarkers associated with the disease would activate another promoter, leading to 5) expression of the second recombinase. Two irreversible gene modification events performed by recombinases 1 and 2 at different points in time form an AND gate, activating expression of an output gene.

Do our recombinases work?

We investigated 2 models of recombinase for regulating gene expression:

  1. Using a unidirectional tyrosine recombinase (Cre or FLP) to excise a transcriptional stop signal, allowing a downstream gene to be expressed.
  2. Using a unidirectional serine recombinase (TP901) to flip gene from an off to an on orientation.
Figure. Regulating gene expression using recombinases models.

Our experimental data showed that:

  1. The flipped gene system (2nd model) successfully knocked down the expression of the gene, while the transcriptional stop signal (1st model) did not.
  2. The expression level of the flipped gene can be indirectly controlled by expression of the recombinases (TP901) under an inducible promoter.

Read more about recombinase experiments here

Challenges with High Efficiency of Recombinases

Recombinases are highly efficient enzymes. When combined with a high-basal-activity promoter, this presents a challenge. A few copies of the recombinase due to promoter's leaky expression, could lead to significant amount of undesired output gene expression. In order to effectively use of recombinases as biological latches, basal expression must be reduced as much as possible. A strong repression system must be used in order to reduce leaky expression.

Repressible Promoters

In order to gain tighter control of the recombinases, we paired them with repressible promoters that do not allow transcription of the recombinase to take place if a specific repressor protein is present. The three repressors we investigated included BM3R1, TAL14, and TAL21 because of their demonstrated success in literature.

Read more about repressor experiments here

Translational Regulation: L7Ae/kink-turn

We did a lot of research into effective high level repression systems, such as degradation tag RNA-based gene regulation systems. After talking to experts in the Dr. Weiss' lab, we decided to test the L7Ae k-turn system due to the availability of the system's components.

Figure. Number of k-turn motifs at the 5'UTR can tune the expression of the regulated gene (TP901).

Read more about our L7Ae k-turn experiment here